Mini Drone-Based Precision Agriculture for Indonesian MSMEs: A Low-Cost AI-Assisted Monitoring System

  • Davy Ronald Hermanus Institut Teknologi Bandung /Bina Nusantara University
  • Suhono Harso Supangkat Institut Teknologi Bandung
  • Fadhil Hidayat Institut Teknologi Bandung
Keywords: Smart Precision Agriculture, Mini Drone, MSME, Smart City, Deep Learning

Abstract

This research introduces a cost-effective drone-based agricultural monitoring system targeted at Indonesia’s smallholder farming enterprises (MSMEs). By leveraging mini drones (DJI Mini 2 SE) and lightweight AI models, farmers can segment land, detect vegetation health, and count crops using simple RGB video analysis. The system utilizes a mobile-to-YouTube private livestream pipeline and performs video processing offline using semantic segmentation (U-Net) and object detection (YOLOvX). The prototype system—tested on a 300m² vegetable plot—shows promising results with over 90% detection accuracy and effective land use visualization. The interface, built with Streamlit, provides real-time insights, affordability, and aligns with Smart City goals of accessibility and sustainability.

Downloads

Download data is not yet available.

References

F. I. Komunikasi, U. Bhayangkara, and J. Raya, “Indonesia ’ S Communication Strategy In CTI-CFF Cooperation in Supporting National Food Security Strategi Komunikasi Indonesia dalam Kerja Sama CTI -,” vol. 2, no. 3, pp. 3698–3706, 2025.

L. Judijanto, D. O. Suparwata, M. Marjan, and L. Y. Andriyani, “The Role of Modern Harvesting Tools in Supporting Agricultural Modernization and National Food Security,” West Science Agro, vol. 3, no. 02, pp. 125–130, 2025, doi: 10.58812/wsa.v3i02.1925.

R. Boonprasert and P. Vijuksungsith, “Agricultural UAVs in Recent Advances, Innovations and Applications,” Advances in Unmanned Aerial Vehicles - New Trends and Applications [Working Title], pp. 1–31, 2025, doi: 10.5772/intechopen.1010104.

S. Beese, “Role of Remote Sensing in Agricultural Survey and Monitoring,” no. October, 2023.

P. Chen et al., “A Survey on Unauthorized UAV Threats to Smart Farming,” Drones, vol. 9, no. 4, pp. 1–38, 2025, doi: 10.3390/drones9040251.

Dr. Tehseen Zia, “Precision Farming: How AI and Drones Are Reshaping Agriculture,” pp. 1–14, 2023, [Online]. Available: https://www.techopedia.com/precision-farming-how-ai-and-drones-are-reshaping-agriculture

P. Tripicchio, M. Satler, G. Dabisias, E. Ruffaldi, and C. A. Avizzano, “Towards Smart Farming and Sustainable Agriculture with Drones,” in Proceedings - 2015 International Conference on Intelligent Environments, IE 2015, Institute of Electrical and Electronics Engineers Inc., Aug. 2015, pp. 140–143. doi: 10.1109/IE.2015.29.

M. S. Journal, “IoT-Based Agriculture Monitoring and Smart Farming Using Drones ” Mukt Shabd Journal, vol. IX, no. Iv, pp. 525–534, 2020.

G. Mohyuddin, M. A. Khan, A. Haseeb, S. Mahpara, M. Waseem, and A. M. Saleh, “Evaluation of Machine Learning Approaches for Precision Farming in Smart Agriculture System: A Comprehensive Review,” IEEE Access, vol. 12, no. May, pp. 60155–60184, 2024, doi: 10.1109/ACCESS.2024.3390581.

Y. A, M. A, and R. M, “Economic Analysis of Drone Technology in Agriculture: Insights from Farmer Producer Organisation in Tamil Nadu,” Journal of Experimental Agriculture International, vol. 46, no. 12, pp. 611–617, 2024, doi: 10.9734/jeai/2024/v46i123168.

M. Ö. Kollo, V.-A. Veres, and M. Mortan, “From Perception to Practice: Drone Technology in Romanian Agriculture,” Management and Economics Review, vol. 10, no. 1, pp. 5–21, 2025, doi: 10.24818/mer/2025.01-01.

S. Datta et al., “Drone technology in agriculture: A study on economic motivation of farmers,” International Journal of Agriculture and Food Science, vol. 7, no. 7, pp. 330–332, 2025, doi: 10.33545/2664844x.2025.v7.i7d.527.

S. Mukherjee, “Applications of Modern Technologies , Drones , and IoT in Indian Agriculture Applications of Modern Technologies , Drones , and IoT in Indian Agriculture 20th June , 2025 For The World Agricultural Forum By Soumyajit Mukherjee,” no. August, 2025, doi: 10.13140/RG.2.2.35146.07361.

H. Kamal Mallick, S. Chatterjee, and R. Mallick, “Application of Drone Technology: A New Era for Sustainable Agriculture,” NL Journal of Agriculture and Biotechnology, vol. 2, no. 1, pp. 37–48, 2025, doi: 10.71168/nab.02.01.105.

F. Ç. Baz, “Industry 4.0 in Agriculture: Smart Agricultural Applications and Drone Use in Agriculture,” Turkish Journal of Agriculture - Food Science and Technology, vol. 13, no. 5, pp. 1139–1145, 2025, doi: 10.24925/turjaf.v13i5.1139-1145.6905.

S. F. A. Razak, S. Yogarayan, M. S. Sayeed, and M. I. F. M. Derafi, “Agriculture 5.0 and Explainable AI for Smart Agriculture: A Scoping Review,” Emerging Science Journal, vol. 8, no. 2, pp. 744–760, 2024, doi: 10.28991/ESJ-2024-08-02-024.

Y. Su and X. Wang, “Innovation of agricultural economic management in the process of constructing smart agriculture by big data,” Sustainable Computing: Informatics and Systems, vol. 31, Sep. 2021, doi: 10.1016/j.suscom.2021.100579.

V. K. Quy et al., “IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges,” Applied Sciences (Switzerland), vol. 12, no. 7, 2022, doi: 10.3390/app12073396.

C. Prabha and A. Pathak, “Enabling Technologies in Smart Agriculture: A Way Forward Towards Future Fields,” 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), 2023, doi: 10.1109/incacct57535.2023.10141722.

J. Shobana et al., “Smart Agriculture: Integrating Air Quality Monitoring With Deep Learning for Process Optimization*,” Scalable Computing, vol. 26, no. 3, pp. 1005–1016, 2025, doi: 10.12694/scpe.v26i3.4190.

O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 718–752, 2021, doi: 10.1109/JAS.2021.1003925.

R. Chin, C. Catal, and A. Kassahun, “Plant disease detection using drones in precision agriculture,” 2023, Springer. doi: 10.1007/s11119-023-10014-y.

C. Singh, R. Mishra, H. P. Gupta, and P. Kumari, “The Internet of Drones in Precision Agriculture: Challenges, Solutions, and Research Opportunities,” IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 180–184, May 2022, doi: 10.1109/iotm.006.2100100.

C. Singh et al., “The Internet of Drones in Precision Agriculture: Challenges, Solutions, and Research Opportunities,” IEEE internet of things magazine, 2022, doi: 10.1109/iotm.006.2100100.

Y. Inoue, “Satellite- and drone-based remote sensing of crops and soils for smart farming–a review,” 2020, Taylor and Francis Ltd. doi: 10.1080/00380768.2020.1738899.

J. Leng, M. Mo, Y. Zhou, C. Gao, W. Li, and X. Gao, “Pareto Refocusing for Drone-view Object Detection,” IEEE Transactions on Circuits and Systems for Video Technology, Mar. 2022, doi: 10.1109/TCSVT.2022.3210207.

W. Reckling, H. Mitasova, K. Wegmann, G. Kauffman, and R. Reid, “Efficient drone-based rare plant monitoring using a species distribution model and ai-based object detection,” Drones, vol. 5, no. 4, 2021, doi: 10.3390/drones5040110.

T. Q. Khoi, N. A. Quang, and N. K. Hieu, “Object detection for drones on Raspberry Pi potentials and challenges,” IOP Conf Ser Mater Sci Eng, vol. 1109, no. 1, p. 012033, Mar. 2021, doi: 10.1088/1757-899x/1109/1/012033.

R. Walambe, A. Marathe, and K. Kotecha, “Multiscale object detection from drone imagery using ensemble transfer learning,” Drones, vol. 5, no. 3, pp. 1–24, 2021, doi: 10.3390/drones5030066.

Y. Egi, Y. Egi, M. Hajyzadeh, M. Hajyzadeh, E. Eyceyurt, and E. Eyceyurt, “Drone-Computer Communication Based Tomato Generative Organ Counting Model Using YOLO V5 and Deep-Sort,” Agriculture, 2022, doi: 10.3390/agriculture12091290.

B. Aydin and S. Singha, “Drone Detection Using YOLOv5,” Engineer, 2023, doi: 10.3390/eng4010025.

H. Liu, K. Fan, Q. Ouyang, and N. Li, “Real-time small drones detection based on pruned yolov4,” Sensors, vol. 21, no. 10, 2021, doi: 10.3390/s21103374.

H. R. Alsanad et al., “YOLO-V3 based real-time drone detection algorithm,” Multimed Tools Appl, 2022, doi: 10.1007/s11042-022-12939-4.

L. L. Zhao and M. L. Zhu, “MS-YOLOv7:YOLOv7 Based on Multi-Scale for Object Detection on UAV Aerial Photography,” Drones, vol. 7, no. 3, Mar. 2023, doi: 10.3390/drones7030188.

X. Chen et al., “Wildland Fire Detection and Monitoring using a Drone-collected RGB/IR Image Dataset,” in 2022 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), IEEE, Oct. 2022, pp. 1–4. doi: 10.1109/AIPR57179.2022.10092208.

L. Parra, D. Mostaza-Colado, S. Yousfi, J. F. Marin, P. V. Mauri, and J. Lloret, “Drone rgb images as a reliable information source to determine legumes establishment success,” Drones, vol. 5, no. 3, 2021, doi: 10.3390/drones5030079.

E. D. Detiana Yucky, A. Gautama Putrada, and M. Abdurohman, “IoT Drone Camera for a Paddy Crop Health Detector with RGB Comparison,” 2021 9th International Conference on Information and Communication Technology, ICoICT 2021, pp. 155–159, 2021, doi: 10.1109/ICoICT52021.2021.9527421.

K. Gayathri Devi, N. Sowmiya, K. Yasoda, K. Muthulakshmi, and B. Kishore, “Review on application of drones for crop health monitoring and spraying pesticides and fertilizer,” 2020, Innovare Academics Sciences Pvt. Ltd. doi: 10.31838/jcr.07.06.117.

P. Gupta, S. Gopal, M. Sharma, S. Joshi, C. Sahani, and K. Ahalawat, “Agriculture Informatics and Communication: Paradigm of E-Governance and Drone Technology for Crop Monitoring,” Institute of Electrical and Electronics Engineers (IEEE), Dec. 2023, pp. 113–118. doi: 10.1109/icscc59169.2023.10335058.

P. Sidike and M. Maimaitiyiming, “Scholars ’ Mine UAV / Satellite Multiscale Data Fusion for Crop Monitoring and Early Stress Detection,” 2019.

P. Rajalakshmi, B. Naik, and U. B. Desai, “Intelligent Drought Stress Monitoring on Spatio-Spectral-Temporal Drone based Crop Imagery using Deep Networks,” null, 2022, doi: null.

R. Ravikumar et al., “PokkahScan - An Intelligent Drone for detection of Pokkah Boeng Disease in Sugarcane Using Transfer Learning and eXplainable AI,” International Conference on Computing Communication and Networking Technologies, 2024, doi: 10.1109/icccnt61001.2024.10725385.

A. Oltvoort, “Is Smart City Enschede Ready for the Use of Safety and Security Drones?”

M. H. Siddiqi et al., “FANET: Smart city mobility off to a flying start with self-organized drone-based networks,” IET Communications, vol. 16, no. 10, pp. 1209–1217, Jun. 2022, doi: 10.1049/cmu2.12291.

J. P. G. Sterbenz and J. P. G. Sterbenz, “Drones in the Smart City and IoT: Protocols, Resilience, Benefits, and Risks,” DroNet@MobiSys, 2016, doi: 10.1145/2935620.2949659.

M. Bakirci, “Smart city air quality management through leveraging drones for precision monitoring,” Sustain Cities Soc, vol. 106, Jul. 2024, doi: 10.1016/j.scs.2024.105390.

N. S. Rani, K. R. Bhavya, A. Vadivel, T. Vasudev, R. M. Devadas, and V. Hiremani, “A Novel Curriculum Learning Training Strategy for Pomegranate Growth Stage Classification Using YOLO Models on Multi-Source Datasets for Precision Agriculture,” IEEE Access, vol. 13, no. June, pp. 112594–112622, 2025, doi: 10.1109/ACCESS.2025.3581794.

G. Singh et al., “Enhanced Leaf Disease Segmentation Using U-Net Architecture for Precision Agriculture: A Deep Learning Approach,” Food Sci Nutr, vol. 13, no. 7, 2025, doi: 10.1002/fsn3.70594.

“DSGSU-Net : A U-Net-Based Model for Tomato Leaf Disease Segmentation Using Depthwise Separable Convolutions and Ghost Sampling DSGSU-Net : A U-Net-Based Model for Tomato Leaf Disease Segmentation Using Depthwise Separable Convolutions and Ghost Sampling,” pp. 0–20, 2025.

Z. Liu, “Image Recognition and Enhancements of the U-Net Model,” Applied and Computational Engineering, vol. 172, no. 1, pp. 164–173, 2025, doi: 10.54254/2755-2721/2025.gl24843.

Q. Liu and J. Zhao, “MA-Res U-Net: Design of Soybean Navigation System with Improved U-Net Model,” Phyton-International Journal of Experimental Botany, vol. 93, no. 10, pp. 2663–2681, 2024, doi: 10.32604/phyton.2024.056054.

S. E. E. Profile, Benchmarking U-Net , FCN , and DeepLabV3 for Precision Plant Segmentation in Agricultural Applications Metin Özetlemede Ekstraktif ve Abstraktif Yakla şı mlar, no. June. 2025.

Y. Cao et al., “Case instance segmentation of small farmland based on Mask R-CNN of feature pyramid network with double attention mechanism in high resolution satellite images,” Comput Electron Agric, vol. 212, no. August 2022, p. 108073, 2023, doi: 10.1016/j.compag.2023.108073.

M. T. Chiu et al., “Agriculture-vision: A large aerial image database for agricultural pattern analysis,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2825–2835, 2020, doi: 10.1109/CVPR42600.2020.00290.

D. Popescu, L. Ichim, and F. Stoican, “Orchard monitoring based on unmanned aerial vehicles and image processing by artificial neural networks: a systematic review,” Front Plant Sci, vol. 14, no. November, pp. 1–30, 2023, doi: 10.3389/fpls.2023.1237695.

N. Stefas, H. Bayram, and V. Isler, “Vision-based monitoring of orchards with UAVs,” Comput Electron Agric, vol. 163, no. May, p. 104814, 2019, doi: 10.1016/j.compag.2019.05.023.

Y. Karumanchi, G. L. Prasanna, S. Mukherjee, and N. Kolagani, “Plantation Monitoring Using Drone Images: A Dataset and Performance Review,” 2025, [Online]. Available: http://arxiv.org/abs/2502.08233

H. Yu et al., “The Unmanned Aerial Vehicle Benchmark: Object Detection, Tracking and Baseline,” Int J Comput Vis, vol. 128, no. 5, pp. 1141–1159, 2020, doi: 10.1007/s11263-019-01266-1.

G. S. Xia et al., “DOTA: A Large-Scale Dataset for Object Detection in Aerial Images,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3974–3983, 2018, doi: 10.1109/CVPR.2018.00418.

Published
2025-08-31
How to Cite
Hermanus, D. R., Supangkat, S. H., & Hidayat, F. (2025). Mini Drone-Based Precision Agriculture for Indonesian MSMEs: A Low-Cost AI-Assisted Monitoring System. Jurnal Sistem Cerdas, 8(2), 203 - 215. https://doi.org/10.37396/jsc.v8i2.555
Section
Articles

Most read articles by the same author(s)