Sentiment Analysis on the Impact of Artificial Intelligence (AI) Development to Determine Technology Needs
Abstract
Artificial Intelligence (AI) has become a hot topic in recent years in Indonesia. To determine the influence of AI developments in determining technology needs, a sentiment analysis needs to be carried out. Sentiment analysis is a process used to help identify the contents of a dataset in the form of opinions or views (sentiments) in text form regarding an issue or event that is positive, negative or neutral. The algorithm applied in this research is the Multinominal Naive Bayes Classifier method. The Multinominal Naive Bayes Classifier method was chosen because it has quite high processing speed and accuracy when used on large, varied and large amounts of data. In this research, the sentiment results were "Negative" for the topic of data security and privacy with a testing accuracy of 75%, "Positive" for Economic Topics with a testing accuracy of 50%, "Negative" for Industrial Topics with a testing accuracy of 58%, "Positive" for Field Topics jobs with a testing accuracy of 75%, “Negative” Transportation Topics with a testing accuracy of 50%, and “Negative” for Education Topics with a testing accuracy of 67%.
Downloads
References
Y. Devianto dan S. Dwiasnati, “Kerangka kerja sistem kecerdasan buatan dalam meningkatkan kompetensi sumber daya manusia Indonesia,” InComTech J. Telekomun. dan Komput., vol. 10, no. 1, hal. 19–24, 2020.
D. Sri Rahayu, R. Novita, T. Khairil Ahsyar, dan Zarnelly, “Sentiment Analysis ChatGPT Using the Multinominal Naïve Bayes Classifier (NBC) Algorithm,” J. Sist. Cerdas, vol. 7, no. 1, hal. 66–74, Apr 2024, doi: 10.37396/jsc.v7i1.388.
A. Arly, N. Dwi, dan R. Andini, “Implementasi Penggunaan Artificial Intelligence Dalam Proses Pembelajaran Mahasiswa Ilmu Komunikasi di Kelas A,” in Prosiding Seminar Nasional Ilmu Ilmu Sosial (SNIIS), 2023, vol. 2, hal. 362–374.
M. F. Gafar, Jembatan ilmu: AI dalam konteks akademis untuk masa depan pendidikan. CV Brimedia Global, 2024.
G. S. Mahendra et al., Tren Teknologi AI: Pengantar, Teori, dan Contoh Penerapan Artificial Intelligence di Berbagai Bidang. PT. Sonpedia Publishing Indonesia, 2024.
Y. K. Dwivedi et al., “Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” Int. J. Inf. Manage., vol. 57, hal. 101994, 2021.
H. Benbya, T. H. Davenport, dan S. Pachidi, “Artificial intelligence in organizations: Current state and future opportunities,” MIS Q. Exec., vol. 19, no. 4, 2020.
I. Fauzan, “ARTIFICIAL INTELLIGENCE (AI) PADA PROSES PENGAWASAN DAN PENGENDALIAN KEPEGAWAIAN–SEBUAH EKSPLORASI KONSEP SETELAH MASA PANDEMI BERAKHIR,” Civ. Serv. J., vol. 14, no. 1 Juni, hal. 31–42, 2020.
A. Ligthart, C. Catal, dan B. Tekinerdogan, “Systematic reviews in sentiment analysis: a tertiary study,” Artif. Intell. Rev., hal. 1–57, 2021.
P. U. Rukmana, O. N. Pratiwi, dan H. Fakhrurroja, “Perbandingan Analisis Sentimen Aplikasi Traveloka dan Tiket.com pada Twitter dengan Metode Support Vector Machine,” J. Sist. Cerdas, vol. 6, no. 3, hal. 241–250, Des 2023, doi: 10.37396/jsc.v6i3.350.
M. Hakiem, M. A. Fauzi, dan I. Indriati, “Klasifikasi ujaran kebencian pada twitter menggunakan metode naïve bayes berbasis N-gram dengan seleksi fitur information gain,” vol, vol. 3, hal. 2443–2451, 2019.
H. Utama dan A. Masruro, “Analisis Sentimen pada Twitter menggunakan Word Embedding dengan Pendekatan Word2Vec,” J. Sist. Cerdas, vol. 5, no. 2, hal. 128–134, Agu 2022, doi: 10.37396/jsc.v5i2.242.
M. I. Fikri, T. S. Sabrila, dan Y. Azhar, “Perbandingan metode naïve bayes dan support vector machine pada analisis sentimen twitter,” SMATIKA J. STIKI Inform. J., vol. 10, no. 02, hal. 71–76, 2020.
A. Z. Amrullah, A. S. Anas, dan M. A. J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” J. Bumigora Inf. Technol., vol. 2, no. 1, hal. 40–44, 2020.
I. Riadi, “Analisis Data Mining Sistem Inventory Menggunakan Algoritma Apriori: Analysis Data Mining of Inventory System Using Apriori Algorithm,” Decod. J. Pendidik. Teknol. Inf., vol. 3, no. 1, hal. 118–129, 2023.
A. Yudhana, I. Riadi, dan M. R. Djou, “Pengembangan Layanan Kependudukan Dan Pencatatan Sipil Menggunakan Algoritma Naïve Bayes,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, hal. 1062–1072, 2022.
S. N. J. Fitriyyah, N. Safriadi, dan E. E. Pratama, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 5, no. 3, hal. 279–285, 2019.
F. V. Sari dan A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd. Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 2, hal. 681–686, 2019.
I. Riadi, R. Umar, dan F. D. Aini, “Analisis Perbandingan Detection Traffic Anomaly Dengan Metode Naive Bayes Dan Support Vector Machine (Svm),” Ilk. J. Ilm., vol. 11, no. 1, hal. 17–24, 2019.
P. S. M. Suryani, L. Linawati, dan K. O. Saputra, “Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, hal. 145, 2019.
P. Arsi, B. A. Kusuma, dan A. Nurhakim, “Analisis Sentimen Pindah Ibu Kota Berbasis Naive Bayes Classifier,” J. Inform. Upgris, vol. 7, no. 1, 2021.
T. Krisdiyanto, “Analisis sentimen opini masyarakat Indonesia terhadap kebijakan PPKM pada media sosial Twitter menggunakan Naïve bayes classifiers,” J. CoreIT, hal. 32–37, 2021.
A. D. A. Putra dan S. Juanita, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, hal. 636–646, 2021.
N. Hidayah dan S. Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, hal. 820–826, 2021.