Sentiment Analysis ChatGPT Using the Multinominal Naïve Bayes Classifier (NBC) Algorithm
Abstract
Chatbots have become one of the popular solutions for improving customer service. One well-known chatbot is ChatGPT, a language model developed by OpenAI. As time goes by and more and more people use ChatGPT, sentiment analysis is needed about users' opinions about the ChatGPT service. Therefore, it is necessary to carry out sentiment analysis of the ChatGPT service on Twitter to find out how users respond to this chatbot service. In this research, the results showed positive sentiment of 57%, negative sentiment of 29% and neutral sentiment of 14%. Topics for each sentiment were also obtained and sentiment prediction results from 40% of the test data with results of 96% positive, 3.5% negative and 0.5% neutral with a test accuracy of 63%.
Downloads
References
B. Huang, Y. Ou, and K. M. Carley, “Aspect level sentiment classification with attention-over-attention neural networks,” in Social, Cultural, and Behavioral Modeling: 11th International Conference, SBP-BRiMS 2018, Washington, DC, USA, July 10-13, 2018, Proceedings 11, 2018, pp. 197–206.
M. Abdullah, A. Madain, and Y. Jararweh, “ChatGPT: Fundamentals, applications and social impacts,” in 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS), 2022, pp. 1–8.
T. Hadian, M. Pkim, and E. Rahmi, Berteman dengan ChatGPT: Sebuah Transformasi dalam Pendidikan. Edu Publisher, 2023.
U. Chakraborty, S. Roy, and S. Kumar, Rise of Generative AI and ChatGPT: Understand how Generative AI and ChatGPT are transforming and reshaping the business world (English Edition). BPB Publications, 2023.
Y. Cao et al., “A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt,” arXiv Prepr. arXiv2303.04226, 2023.
M. N. Fahriza and N. Riza, “ANALISIS SENTIMEN PADA ULASAN APLIKASI CHAT GENERATIVE PRE-TRAINED TRANSFORMER GPT MENGGUNAKAN METODE KLASIFIKASI K-NEAREST NEIGHBOR (KNN),” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1351–1358, 2023.
R. S. Y. Zebua et al., FENOMENA ARTIFICIAL INTELLIGENCE (AI). PT. Sonpedia Publishing Indonesia, 2023.
D. Kalla and N. Smith, “Study and analysis of chat GPT and its impact on different fields of study,” Int. J. Innov. Sci. Res. Technol., vol. 8, no. 3, 2023.
E. H. Muktafin, K. Kusrini, and E. T. Luthfi, “Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing,” J. Eksplora Inform., vol. 10, no. 1, pp. 32–42, 2020.
V. Taecharungroj, “‘What can ChatGPT do?’ Analyzing early reactions to the innovative AI chatbot on Twitter,” Big Data Cogn. Comput., vol. 7, no. 1, p. 35, 2023.
D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent neural network for sentiment classification,” in Proceedings of the 2015 conference on empirical methods in natural language processing, 2015, pp. 1422–1432.
P. S. Zalukhu, T. Handhayani, and M. Sitorus, “Analisis Sentimen terhadap Kenaikan BBM di Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 8, no. 1, pp. 65–69, 2023.
P. U. Maharani, N. Amalita, A. A. Putra, and F. Fitri, “Sentiment Analysis og Goride Services on Twitter Social Media Using Naive Bayes Algorithm,” UNP J. Stat. Data Sci., vol. 1, no. 3, pp. 134–139, 2023.
P. I. Anakku, E. Erizal, and F. N. Hasan, “Visualisasi Dashboard Business Intelligence Untuk Analisa Ketersediaan Tenaga Kesehatan Pada Saat Covid-19 Di Jakarta Menggunakan Tableau,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 4, no. 4, pp. 1006–1019, 2023.
D. Atmajaya, A. Febrianti, and H. Darwis, “Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter,” Indones. J. Comput. Sci., vol. 12, no. 4, 2023.
A. M. Zuhdi, E. Utami, and S. Raharjo, “Analisis sentiment twitter terhadap capres Indonesia 2019 dengan metode K-NN,” J. Inf. J. Penelit. dan Pengabdi. Masy., vol. 5, no. 2, pp. 1–7, 2019.
E. R. Subhiyakto, Y. P. Astuti, N. Alexander, and E. Kartikadarma, “Analisis Sentimen Menggunakan Metode Naïve Bayes Untuk Mengetahui Respon Masyarakat Terhadap Vaksinasi,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 4, no. 02, pp. 179–188, 2022.
R. L. Atimi and E. E. Pratama, “Implementasi Model Klasifikasi Sentimen Pada Review Produk Lazada Indonesia,” J. Sains Dan Inform., vol. 8, no. 1, pp. 88–96, 2022.
E. Mulyani, F. P. B. Muhamad, and K. A. Cahyanto, “Pengaruh N-Gram terhadap Klasifikasi Buku menggunakan Ekstraksi dan Seleksi Fitur pada Multinomial Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 1, pp. 264–272, 2021.
S. Fanissa, M. A. Fauzi, and S. Adinugroho, “Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking,” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., vol. 2, no. 8, pp. 2766–2770, 2018.
N. Hidayah and S. Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, 2021.