Classification of Beef and Pork with Deep Learning Approach

  • Akhiril Anwar Harahap Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Rice Novita UIN Sultan Syarif Kasim Riau
  • Tengku Khairil Ahsyar UIN Sultan Syarif Kasim Riau
  • Zarnelly UIN Sultan Syarif Kasim Riau
Keywords: Classification, Inception-V3, Inception-Resnet-V2, Flask

Abstract

Beef is one of the most consumed meats in Indonesia. However, the high price of beef has led to rogue traders mixing pork with beef. This condition occurs due to the lack of public knowledge about the difference between the two meats. To maintain food safety in Indonesia and especially in Riau province, the Livestock Service Office of Riau province conducts market surveys. There are several methods that are usually used to check the content of beef or pork, including Rapid Test Kit and Elisa. Both methods are time consuming and costly. One other solution that can be used is the artificial intelligence method, namely deep learning. In this research, a classification approach using deep learning is used to distinguish between beef and pork in the form of a web application. This research compares Convolutional Neural Network algorithm with Inception-V3 and Inception-Resnet-V2 architecture with hyperparameter optimization. From several experiments that have been carried out, the best model is the Inception-Resnet-V2 architecture with an experimental scenario using a learning rate of 0.001, and an optimizer Adam with an accuracy of 96.50%, Precision 96.48%, Recall 96.55% and F1-Score 96.50%. By using this model, web-based applications can be developed using the flask framework well and can perform classification accurately.

Downloads

Download data is not yet available.

References

J. Greenwell, M. Grant, L. Young, S. Mackay, and K. E. Bradbury, “The prevalence of vegetarians, vegans and other dietary patterns that exclude some animal-source foods in a representative sample of New Zealand adults,” Public Health Nutr., vol. 27, no. 1, pp. 1–9, 2024, doi: 10.1017/S1368980023002677.

K. A. Surijati, P. W. Hapsari, and W. L. Rubai, “Faktor-faktor yang Mempengaruhi Pola Makan Siswa Sekolah Dasar di Kabupaten Banyumas,” Nutr. J. Pangan,Gizi,Kesehatan, vol. 2, no. 1, pp. 95–100, 2021, doi: 10.30812/nutriology.v2i1.1242.

A. Azizah and E. Soesetyaningsih, “Akurasi Perhitungan Bakteri pada Daging Sapi Menggunakan Metode Hitung Cawan,” Berk. Sainstek, vol. 8, no. 3, p. 75, 2020, doi: 10.19184/bst.v8i3.16828.

S. Maiyena and E. R. Mawarnis, “Kajian Analisis Konsumsi Daging Sapi dan Daging Babi Ditinjaudari Kesehatan,” J. Pendidik. Tambusai, vol. 6, no. 1, pp. 3131–3136, 2022.

P. I. H. P. S. Nasional, “Informasi Harga Pangan Antar Daerah,” PUSAT INFORMASI HARGA PANGAN STRATEGIS NASIONAL, 2023. https://www.bi.go.id/hargapangan

M. Sompie, E. H. B. Sondakh, and T. R. Liudongi, “Karakteristik Fisik dan Sensorik Sosis Daging Babi dengan Penambahan Konsentrasi Gelatin,” J. Zootec, vol. 42, no. 2, pp. 473–478, 2022.

M. R. Dharmawan, D. Syauqy, and G. E. Setyawan, “Sistem Pembeda Daging Sapi dan Daging Babi berdasarkan Warna dan Kadar Amonia menggunakan Metode Jaringan Syaraf Tiruan Berbasis Android,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 11, p. 10, 2020, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6755

L. Nida, H. Pisestyani, and C. Basri, “Studi Kasus: Pemalsuan Daging Sapi dengan Daging Babi Hutan di Kota Bogor,” J. Kaji. Vet., vol. 8, no. 2, pp. 121–130, Dec. 2020, doi: 10.35508/jkv.v8i2.2326.

T. Rahadian, “7 Kasus Oplosan Daging Babi di Berbagai Daerah,” kumparan, 2020. https://kumparan.com/kumparannews/7-kasus-oplosan-daging-babi-di-berbagai-daerah-1tS9FqLNl11/full

D. Q. A. Salam and A. Makhtum, “Implementasi Jaminan Produk Halal Melalui Sertifikasi Halal Pada Produk Makanan Dan Minuman Umkm Di Kabupaten Sampang,” Qawwam Leader’s Writ., vol. 3, no. 1, pp. 10–20, 2022, [Online]. Available: https://www.jurnalfuad.org/index.php/qawwam/article/view/110

D. Cahyaningsari, H. Latif, and E. Sudarnika, “Identifikasi Penambahan Daging Babi pada Pangan Berbahan Dasar Daging Sapi Menggunakan ELISA dan qPCR (Identification of Pork and Wild Boar Meat Alduteration in Beef and Beef Product Using ELISA and qPCR),” Acta Vet. Indones., vol. 7, no. 2, pp. 17–25, 2019, [Online]. Available: http://www.journal.ipb.ac.id/indeks.php/actavetindones

R. Ummami, D. Ramandani, C. M. Airin, A. Husni, and P. Astuti, “Uji Kualitas dan Uji Cemaran Daging Babi Pada Daging Sapi di Beberapa Pasar Tradisional di Yogyakarta,” J. Ilmu Peternak. dan Vet. Trop. (Journal Trop. Anim. Vet. Sci., vol. 12, no. 2, pp. 151–160, 2022, doi: 10.46549/jipvet.v12i2.277.

S. Lasniari, J. Jasril, S. Sanjaya, F. Yanto, and M. Affandes, “Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 450, 2022, doi: 10.30865/json.v3i4.4167.

G. Y. Alhafis, J. Jasril, S. Sanjaya, F. Syafria, and E. Budianita, “Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan Ekstraksi Ciri dan Convolutional Neural Network,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 3, p. 653, 2022, doi: 10.30865/jurikom.v9i3.4175.

I. Akhmad, J. Jasril, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan CNN Arsitektur EfficientNet-B6 dan Augmentasi Data,” J. Sist. Komput. dan Inform., vol. 4, no. 4, p. 642, 2023, doi: 10.30865/json.v4i4.6195.

L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indones. J. Appl. Stat., vol. 2, no. 1, p. 34, 2019, doi: 10.13057/ijas.v2i1.29998.

R. Kumari and J. Wasim, “A Deep Learning Approach for Human Facial Expression Recognition using Residual Network – 101,” J. Curr. Sci. Technol., vol. 13, no. 3, pp. 517–532, 2023, doi: 10.59796/jcst.V13N3.2023.2152.

V. Anand, S. Gupta, D. Koundal, W. Y. Alghamdi, and B. M. Alsharbi, “Deep learning-based image annotation for leukocyte segmentation and classification of blood cell morphology,” BMC Med. Imaging, vol. 24, no. 1, pp. 1–15, 2024, doi: 10.1186/s12880-024-01254-z.

M. Wahyudi and A. Andriani, “Application of C4.5 and Naïve Bayes Algorithm for Detection of Potential Increased Case Fatality Rate Diarrhea,” J. Phys. Conf. Ser., vol. 1830, no. 1, 2021, doi: 10.1088/1742-6596/1830/1/012016.

P. Singh, A. Verma, and J. S. R. Alex, “Disease and pest infection detection in coconut tree through deep learning techniques,” Comput. Electron. Agric., vol. 182, no. July 2020, p. 105986, 2021, doi: 10.1016/j.compag.2021.105986.

M. G. L. Putra and M. I. A. Putera, “Analisis Perbandingan Metode Soap Dan Rest Yang Digunakan Pada Framework Flask Untuk Membangun Web Service,” SCAN - J. Teknol. Inf. dan Komun., vol. 14, no. 2, pp. 1–7, 2019, doi: 10.33005/scan.v14i2.1480.

Published
2024-04-29
How to Cite
Akhiril Anwar Harahap, Novita, R., Ahsyar, T. K., & Zarnelly, Z. (2024). Classification of Beef and Pork with Deep Learning Approach. Jurnal Sistem Cerdas, 7(1), 55 - 65. https://doi.org/10.37396/jsc.v7i1.393
Section
Articles