Customer Segmentation Using the RFMD Model and Fuzzy C-Means Algorithm

  • Muhammad Hafis Zikri Universitas Islam Negeri Sultan Syarif Kasim
  • Siti Monalisa
  • Fitriani Muttakin
Keywords: Clustering, Customer Segmentation, Fuzzy C-Means, RFMD

Abstract

Many businesses face challenges in optimizing customer data processing, which often limits the ability to understand customer behavior and improve marketing strategies. This research addresses these challenges by applying the RFMD (Recency, Frequency, Monetary, Diversity) model combined with the Fuzzy C-Means (FCM) clustering algorithm to segment customers based on transaction data. The results identified five distinct customer segments based on Customer portfolio Analysis (CPA), which were validated using the Davies-Bouldin Index (DBI), with each segment showing diverse levels of engagement and behavioral patterns. The results show that the best clusters of Superstar and Golden customers are clusters 4 and 2, while Typical and Occasional customers are clusters 1 and 3. The lowest cluster of Everyday customers is found in cluster 5. The findings provide applicable insights to improve customer retention and optimize data-driven marketing strategies.

Downloads

Download data is not yet available.

References

A. A. D. Sulistyawati and M. Sadikin, “Penerapan Algoritma K-Medoids Untuk Menentukan Segmentasi Pelanggan,” Sistemasi, vol. 10, no. 3, p. 516, 2021, doi: 10.32520/stmsi.v10i3.1332.

G. V. Bhupathiraju, V. Reddygari, and T. Sai, “Data mining for the online retail industry : Customer segmentation and assessment of customers using RFM and k-means ABSTRACT : INTRODUCTION : RESEARCH OBJECTIVES :,” pp. 1–9, 2022.

W. V. Oliveira, D. S. A. Araujo, and L. C. T. Bezerra, “Supermarket customer segmentation: A case study in a large Brazilian retail chain,” Proc. - 2022 IEEE 24th Conf. Bus. Informatics, CBI 2022, vol. 1, pp. 70–79, 2022, doi: 10.1109/CBI54897.2022.00015.

D. P. Hidayatullah, R. I. Rokhmawati, and ..., “Analisis Pemetaan Pelanggan Potensial Menggunakan Algoritma K-Means dan LRFM Model Untuk Mendukung Strategi Pengelolaan Pelanggan (Studi Pada …,” … Inf. dan Ilmu …, vol. 2, no. 8, 2018.

F. Marisa, S. S. S. Ahmad, Z. I. M. Yusof, Fachrudin, and T. M. A. Aziz, “Segmentation model of customer lifetime value in Small and Medium Enterprise (SMEs) using K-Means Clustering and LRFM model,” Int. J. Integr. Eng., vol. 11, no. 3, pp. 169–180, 2019, doi: 10.30880/ijie.2019.11.03.018.

M. Y. Smaili and H. Hachimi, “New RFM-D classification model for improving customer analysis and response prediction,” Ain Shams Eng. J., vol. 14, no. 12, p. 102254, 2023, doi: 10.1016/j.asej.2023.102254.

Y. O. Pailan, Y. H. Chrisnanto, and A. I. Hadianna, “Segmentasi Loyalitas Pelanggan Berbasis RFM (Recency, Frequency, Monetary) Menggunakan K-Means pada PD. Persada Ikan,” Pros. Semin. Nas. Sist. Inf. dan Teknol., vol. 4, no. 1, pp. 167–171, 2020.

Y. Huang, M. Zhang, and Y. He, “Research on improved RFM customer segmentation model based on K-Means algorithm,” Proc. - 2020 5th Int. Conf. Comput. Intell. Appl. ICCIA 2020, pp. 24–27, 2020, doi: 10.1109/ICCIA49625.2020.00012.

Y. Juniarti, “ANALISIS SEGMENTASI PELANGGAN BERDASARKAN RECENCY, FREQUENCY, MONETARY (RFM) DAN DEMOGRAFI MENGGUNAKAN ALGORITMA DBSCAN,” Skripsi tidak ditampilkan, Program Studi Sistem Informasi, Universitas Islam Negeri Sultan Syarif Kasim, RIAU, 2021.

A. Dwirahmawan, N. Y. Setiawan, and D. Pramono, “Analisis Metode Fuzzy C-Means dengan Model LRFM terhadap Segmentasi Pelanggan pada Toko Butik ( Studi Kasus : Diva Collection Kota Cilegon ),” vol. 5, no. 12, pp. 5278–5287, 2021.

R. Heldt, C. S. Silveira, and F. B. Luce, “Predicting customer value per product: From RFM to RFM/P,” J. Bus. Res., vol. 127, no. xxxx, pp. 444–453, 2021, doi: 10.1016/j.jbusres.2019.05.001.

F. Juniati, S. Monalisa, R. Zafa, and M. Muslim, “KLASTERISASI CUSTOMER LIFETIME VALUE DENGAN MODEL LRFM MENGGUNAKAN ALGORITMA Fuzzy C-Means,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 6, no. 1, p. 38, 2020, doi: 10.24014/rmsi.v6i1.8635.

A. Ilham, N. Y. Setiawan, and T. Afirianto, “Analisis Segmentasi Pelanggan Kartu Prabayar Kabupaten Malang dengan RFM Model Menggunakan Metode Fuzzy C-Means Clustering ( Studi Kasus : PT . XYZ ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 8, pp. 2487–2498, 2020.

S. S. Prasetyo, A. R. Hakim, D. Statistika, F. Sains, and U. Diponegoro, “PENERAPAN FUZZY C-MEANS KLUSTER UNTUK SEGMENTASI PELANGGAN E-COMMERCE DENGAN METODE RECENCY FREQUENCY MONETARY (RFM),” J. GAUSSIAN, vol. 9, pp. 421–433, 2020.

K. Zhou and S. Yang, “Effect of cluster size distribution on clustering: a comparative study of k-means and fuzzy c-means clustering,” Pattern Anal. Appl., vol. 23, pp. 455–466, 2020.

D. L. Aditya and D. Fitrianah, “Comparative Study of Fuzzy C-Means and K-Means Algorithm for Grouping Customer Potential in Brand Limback,” J. Ris. Inform., vol. 3, no. 4, pp. 327–334, 2021, doi: 10.34288/jri.v3i4.241.

M. N. Dayat, N. Suarna, and Y. A. Wijaya, “Analisa Clustering untuk Mengelompokan Data Penayangan Film Bioskop Menggunakan Algoritma K-Means,” Intern. (Information Syst. Journal), vol. 6, no. 1, pp. 68–78, 2023, doi: 10.32627/internal.v6i1.686.

W. Gie and D. Jollyta, “Perbandingan Euclidean dan Manhattan Untuk Optimasi Cluster Menggunakan Davies Bouldin Index: Status Covid-19 Wilayah Riau,” Pros. Semin. Nas. Ris. Dan Inf. Sci., vol. 2, no. April, pp. 187–191, 2020.

Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM J., vol. 10, no. 3, pp. 1099–1103, 2021, doi: 10.18421/TEM103-13.

E. Ditendra, S. Monalisa, S. Anderjovi, and S. Lesmana, “KLASTERISASI CLV DENGAN MODEL LRFM MENGGUNAKAN ALGORITMA FUZZY C-MEANS (Studi Kasus: Pangeran Gym Pekanbaru),” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 6, no. 1, p. 109, 2020, doi: 10.24014/rmsi.v6i1.8535.

A. J. Christy, A. Umamakeswari, L. Priyatharsini, and A. Neyaa, “RFM ranking – An effective approach to customer segmentation,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 10, pp. 1251–1257, 2021, doi: 10.1016/j.jksuci.2018.09.004.

A. Nofiar, S. Defit, and Sumijan, “Penentuan Mutu Kelapa Sawit Menggunakan Metode K-Means Clustering,” J. KomtekInfo, vol. 5, no. 3, pp. 1–9, 2019, doi: 10.35134/komtekinfo.v5i3.26.

R. Muliono and Z. Sembiring, “Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen,” J. Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 2502–714, 2019.

N. Rofiqo, A. P. Windarto, and D. Hartama, “Penerapan Clustering Pada Penduduk Yang Mempunyai Keluhan Kesehatan Dengan Datamining K-Means,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 216–223, 2018, doi: 10.30865/komik.v2i1.929.

Y. Huang, “Research on improved RFM customer segmentation model based on K-Means algorithm,” Int. Conf. Comput. Intell. Appl., no. August 2020, pp. 24–27, 2020, doi: 10.1109/ICCIA49625.2020.00012.

F. Carneiro, R. M. A. Moreira, V. N. De Gaia, R. R. Frias, and V. Miguéis, “Applying Data Mining Techniques and Analytic Hierarchy Process to the Food Industry : Estimating Customer Lifetime Value,” Proc. Int. Conf. Ind. Eng. Oper. Manag., no. Kotler 2000, pp. 266–277, 2021.

F. Tempola and A. F. Assagaf, “Clustering of Potency of Shrimp In Indonesia With K-Means Algorithm And Validation of Davies-Bouldin Index,” vol. 1, no. Icst, pp. 730–733, 2018, doi: 10.2991/icst-18.2018.148.

R. K. Dinata, H. Novriando, N. Hasdyna, and S. Retno, “Reduksi Atribut Menggunakan Information Gain untuk Optimasi Cluster Algoritma K-Means,” J. Edukasi dan Penelit. Inform., vol. 6, no. 1, p. 48, 2020, doi: 10.26418/jp.v6i1.37606.

Published
2024-12-17
How to Cite
Muhammad Hafis Zikri, Siti Monalisa, & Fitriani Muttakin. (2024). Customer Segmentation Using the RFMD Model and Fuzzy C-Means Algorithm. Jurnal Sistem Cerdas, 7(3), 386 - 395. https://doi.org/10.37396/jsc.v7i3.481
Section
Articles