Comparison Of K-Means, K-Medoids, and Fuzzy C-Means Algorithms for Clustering Drug User’s Addiction Levels
Abstract
Narcotics, psychotropics, and addictive substances are drugs that can activate brain systems, affect dopamine levels, and cause addiction. In Indonesia, there is a law requiring drug addicts to receive treatment and care. To properly treat a drug addict, it is first necessary to determine the level of addiction. Data mining methods such as clustering can be used to assess a user's level of drug addiction. This study uses the clustering algorithms Fuzzy C-means, K-Medoids, and K-means. The performance of the three clustering algorithms will then be evaluated based on the average similarity of clusters. Data such as how many types of drugs that used, the length of time they were used, the psychiatric status, and the physical condition status, are used. Clustering was accomplished using the data mining software RStudio. The clustering algorithms were then evaluated with the Davies Bouldin Index (DBI). The K-Medoids algorithm was found to have the best average similarity value of cluster for determining drug users' addiction levels based on the results of the analysis.
Downloads
References
W. Utami Putri, “INDONESIA DRUGS REPORT 2022 Pusat Penelitian, Data, Dan Informasi Badan Narkotika Nasional (PUSLITDATIN BNN).” p. 24, 2022.
BNN, Survei Prevalensi Narkoba 2019. 2019.
R. Indonesia, Undang-undang dasar negara republik indonesia Tahun 1945. Sekretariat Jenderal MPR RI, 2002.
A. Winarta and W. J. Kurniawan, “Optimasi Cluster K-means Menggunakan Metode Elbow pada Data Pengguna Narkoba dengan Pemrograman Python,” J. Tek. Inform. Kaputama, vol. 5, no. 1, pp. 113–119, 2021.
S. S. Tandel, A. Jamadar, and S. Dudugu, “A survey on text mining techniques,” in 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), 2019, pp. 1022–1026.
I. D. Guedalia, M. London, and M. Werman, “An on-line agglomerative clustering method for nonstationary data,” Neural Comput., vol. 11, no. 2, pp. 521–540, 1999.
D. Barbará and P. Chen, “Using self-similarity to cluster large data sets,” Data Min. Knowl. Discov., vol. 7, pp. 123–152, 2003.
R. Helilintar and I. NUR FARIDA, “Penerapan Algoritma K-Means Clustering Untuk Prediksi Prestasi Nilai Akademik Mahasiwa,” J. sains dan Inform., vol. 4, no. 2, pp. 80–87, 2018.
P. Govender and V. Sivakumar, “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019),” Atmos. Pollut. Res., vol. 11, no. 1, pp. 40–56, 2020.
T. S. Madhulatha, “Comparison between k-means and k-medoids clustering algorithms,” in Advances in Computing and Information Technology: First International Conference, ACITY 2011, Chennai, India, July 15-17, 2011. Proceedings, 2011, pp. 472–481.
K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. Transitions Proc., 2022.
L. Morissette and S. Chartier, “The k-means clustering technique: General considerations and implementation in Mathematica,” Tutor. Quant. Methods Psychol., vol. 9, no. 1, pp. 15–24, 2013.
S. Araki, H. Nomura, and N. Wakami, “Segmentation of thermal images using the fuzzy c-means algorithm,” in [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems, 1993, pp. 719–724.
D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE Trans. Pattern Anal. Mach. Intell., no. 2, pp. 224–227, 1979.
T. Wahyudi and T. Silfia, “Implementation of Data Mining Using K-Means Clustering Method To Determine Sales Strategy in S&R Baby Store,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 93–103, 2022, doi: 10.37385/jaets.v4i1.913.
S. Sukamto, I. D. Id, and T. R. Angraini, “Penentuan Daerah Rawan Titik Api di Provinsi Riau Menggunakan Clustering Algoritma K-Means,” JUITA J. Inform., vol. 6, no. 2, p. 137, 2018, doi: 10.30595/juita.v6i2.3172.