Pemodelan Machine Learning : Analisis Sentimen Masyarakat Terhadap Kebijakan PPKM Menggunakan Data Twitter

  • Syafrial Fachri Pane Politeknik Pos Indonesia
  • Jenly Ramdan Politeknik Pos Indonesia
Keywords: Pemodelan, Analisis sentimen, Tweet, Machine Learning, LSTM

Abstract

Abstract— In this pandemic era, the government is forced to implement policies that can reduce the daily positive rate of COVID-19. One of these policies is known as PPKM. It is unclear when the pandemic will end, causing data phenomena to be scattered on social media, one of which is Twitter. Therefore, in this study, we conducted an analysis of sentiment originating from tweets from Twitter social media users in the Jakarta area regarding the government's policy, namely PPKM in the face of the COVID-19 pandemic. In this research, we use a Machine Learning approach, namely LSTM. This modeling produces a classification of positive and negative sentiments. The dataset used is 3000 tweets with a time period of September - November 2021. At the preprocessing stage, the data that are ready to be used for modeling are 2176. The results of this study get an accuracy of 0.943. So the model that we propose, namely LSTM, has succeeded in classifying a satisfactory sentiment with a positive number of 92% and a negative 8% of 2176 sentiments, so it can be concluded that the PPKM policy implemented by the Indonesian government in the DKI Jakarta area is said to be effective or positive.

Downloads

Download data is not yet available.

References

WHO, “Pneumonia of unknown cause – China,” 2020. https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229 (accessed Apr. 13, 2022).

Fajria A (2020, 17 Maret). 11 Negara Ini Lakukan Lockdown Demi Tekan Corona, Indonesia Kok Belum?. Diakses dari http://www.myblog.com/117893

Marry C (2020, 25 Maret). Coronavirus: India enters 'total lockdown' after spike in cases. Diakses dari https://www.bbc.com/news/world-asia-india-52024239

Rollin A (2020, 23 Maret). Australia starts lockdown measures as coronavirus cases jump. Diakses dari https://www.straitstimes.com/asia/australianz/australia-starts-lockdown-measures-as-coronavirus-cases-jump

Lin (2020, 13 Maret). China's coronavirus lockdown strategy: brutal but effective. Diakses dari https://www.theguardian.com/world/2020/mar/19/chinas-coronavirus-lockdown-strategy-brutal-but-effective

Michael R (2021, 1 July). Covid-19: Indonesia announces lockdown in Java and Bali as cases surge. Diakses dari https://www.bbc.com/news/world-asia-57647693

R. Chandra and A. Krishna, “COVID-19 sentiment analysis via deep learning during the rise of novel cases,” PLoS ONE, vol. 16, no. 8 August, Aug. 2021, doi: 10.1371/journal.pone.0255615.

Y. Astari and S. Wahib Rozaqi, “Analisis Sentimen Multi-Class pada Sosial Media menggunakan metode Long Short-Term Memory (LSTM),” 2021.

T. Wang, K. Lu, K. P. Chow, and Q. Zhu, “COVID-19 Sensing: Negative Sentiment Analysis on Social Media in China via BERT Model,” IEEE Access, vol. 8, pp. 138162–138169, 2020, doi: 10.1109/ACCESS.2020.3012595.

Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 802–808, Aug. 2021, doi: 10.29207/resti.v5i4.3308.

A. Tiwari, R. Gupta, and R. Chandra, “Delhi air quality prediction using LSTM deep learning models with a focus on COVID-19 lockdown,” Feb. 2021, [Online]. Available: http://arxiv.org/abs/2102.10551

F. Aldi Nugraha, N. Hanum Harani, R. Habibi, and R. Nuraini Siti Fatonah, “Sentiment Analysis on Social Distancing and Physical Distancing on Twitter Social Media using Recurrent Neural Network (RNN) Algorithm,” Jurnal Online Informatika, vol. 5, no. 2, pp. 195–204, 2020, doi: 10.15575/join.

R. Chandra, A. Jain, and D. S. Chauhan, “Deep learning via LSTM models for COVID-19 infection forecasting in India,” Jan. 2021, [Online]. Available: http://arxiv.org/abs/2101.11881

C. K. N. Paputungan and A. Jacobus, “Sentiment Analysis of Social Media Users Using Long-Short Term Memory Method Analisis Sentimen Pengguna Sosial Media Menggunakan Metode Long Short Term Memory,” Jurnal Teknik Elektro dan Komputer, vol. 10, no. 2.

R. Lamsal, “Design and analysis of a large-scale COVID-19 tweets dataset,” Applied Intelligence, vol. 51, no. 5, pp. 2790–2804, May 2021, doi: 10.1007/s10489-020-02029-z.

A. C. M. V. Srinivas, Ch. Satyanarayana, Ch. Divakar, and K. P. Sirisha, “Sentiment Analysis using Neural Network and LSTM,” IOP Conference Series: Materials Science and Engineering, vol. 1074, no. 1, p. 012007, Feb. 2021, doi: 10.1088/1757-899x/1074/1/012007.

Published
2022-05-01
How to Cite
Pane, S. F., & Ramdan, J. (2022). Pemodelan Machine Learning : Analisis Sentimen Masyarakat Terhadap Kebijakan PPKM Menggunakan Data Twitter. Jurnal Sistem Cerdas, 5(1), 12 - 20. https://doi.org/10.37396/jsc.v5i1.191
Section
Articles