Analisis Klasifikasi SMS Spam Menggunakan Logistic Regression

  • Ferin Reviantika Suprihati -
Keywords: SMS, SMS spam, SMS non spam, Logistic regression, Classification.

Abstract

SMS or Short Message Service is usually found on cell phones. SMS is divided into two categories, namely SMS spam and SMS non-spam (ham). Spam SMS is an SMS that is annoying to phone users because it tends to contain messages that are not important such as promos and scams. Meanwhile, non-spam SMS (ham) tend to contain important SMS, such as messages from previous users. In this study, the classification of spam SMS and non-spam SMS (ham) was carried out using the logistic regression method. The purpose of this study is to distinguish or classify between spam and non-spam SMS (ham). The dataset in this study amounted to 1143 data, there are two columns, namely the text column and the label column. The number for spam messages is 566 messages and the number for non-spam messages is 577. The proposed method gets a better accuracy of 95%.

Downloads

Download data is not yet available.

References

B. Indiarto, “KLASIFIKASI SMS SPAM DENGAN METODE NAIVE BAYES CLASSIFIER UNTUK MENYARING PESAN MELALUI SELULAR,” vol. 8, no. 2, pp. 167–172, 2016.

A. Setiawan, I. F. Astuti, and A. H. Kridalaksana, “KLASIFIKASI DAN PENCARIAN BUKU REFERENSI AKADEMIK MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER ( NBC ) ( STUDI KASUS : PERPUSTAKAAN DAERAH PROVINSI KALIMANTAN TIMUR ),” vol. 10, no. 1, 2015.

I. N. Dewi, C. Supriyanto, F. I. Komputer, and U. D. Nuswantoro, “Klasifikasi Teks Pesan Spam Menggunakan Algoritma Naïve Bayes,” vol. 2013, no. November, pp. 156–160, 2013.

S. Basuki, S. Maghfiroh, and Y. Azhar, “Klasifikasi Tweets Tindak Kejahatan Berbahasa Indonesia Menggunakan Naive Bayes,” vol. 2, no. 7, pp. 933–944, 2020.

G. S. Sravya and G. Pradeepini, “Mobile Sms Spam Filter Techniques Using Machine Learning Techniques,” vol. 9, no. 03, pp. 384–389, 2020.

I. T. Utami, “Analisis Regresi Logistik Biner Untuk Mengklasifikasi Penderita Hipertensi Berdasarkan Kebiasaan Merokok Di RSU Mokopido Toli-Toli Binary Logistic Regression Analysis For Classification Of Hypertension Patients Based On Smoking Habits In Mokopido Toil-Toli Hospital,” vol. 7, no. 3, pp. 341–348, 2018.

D. B. Setyohadi and F. A. Kristiawan, “Perbaikan performansi klasifikasi dengan preprocessing iterative partitioning filter algorithm 1,” vol. 14, no. 01, pp. 12–20, 2017.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” 2018.

A. H. Yunas and M. Fikry, “Klasifikasi Tweet E-Commerce dengan Menggunakan Metode Support Vector Machine,” vol. 4, no. 2, pp. 50–55, 2018.

R. Melita et al., “( TF-IDF ) DAN COSINE SIMILARITY PADA SISTEM TEMU KEMBALI INFORMASI UNTUK MENGETAHUI SYARAH HADITS BERBASIS WEB ( STUDI KASUS : SYARAH UMDATIL AHKAM ),” vol. 11, no. 2, 2018.

K. S. Setyawati et al., “Aplikasi Sentiment Analysis Terhadap Pelaksanaan Pembelajaran Jarak Jauh Universitas Kristen Petra Dengan Metode Naive Bayes Classifier.”

A. Y. Permana, “IMPLEMENTASI STEMMING PORTER KBBI UNTUK KLASIFIKASI TOPIK SOAL UJIAN NASIONAL BAHASA INDONESIA MENGGUNAKAN ALGORITMA NAIVE BAYES,” 2017.

2016 Kurniawati, “Term weighting berbasis indeks kelas menggunakan metode tf.idf.ics,” 2016.

T. Trisna et al., “ANALYSIS AND DETECTION OF HOAX CONTENTS IN INDONESIAN NEWS BASED ON MACHINE LEARNING,” vol. 4, no. 1, 2019.

C. Science, A. Bimantara, and T. A. Dina, “Klasifikasi Web Berbahaya Menggunakan Metode Logistic Regression,” vol. 4, no. 1, pp. 978–979, 2018.

O. S. Balogun, T. J. Akingbade, and A. Akinrefon, “Evaluation Of Logistic Regression In Classification Of Drug Data In Kwara State,” no. May 2014, 2013.

H. Saiyar, “Aplikasi Diagnosa Penyakit Tuberculosis Menggunakan Algoritma Naive Bayes,” vol. 5, no. 5, pp. 498–502, 2018.

M. Athaillah, Y. Azhar, and Y. Munarko, “Perbandingan Metode Klasifikasi Berita Hoaks Berbahasa Indonesia Berbasis Pembelajaran Mesin,” vol. 2, no. 5, pp. 675–682, 2020.

D. H. Kalokasari, I. M. Shofi, and A. H. Setyaningrum, “IMPLEMENTASI ALGORITMA MULTINOMIAL NAIVE BAYES CLASSIFIER PADA SISTEM KLASIFIKASI SURAT KELUAR ( Studi Kasus : DISKOMINFO Kabupaten Tangerang ),” vol. 10, no. 2, 2017.

Published
2021-12-28
How to Cite
Suprihati, F. R. (2021). Analisis Klasifikasi SMS Spam Menggunakan Logistic Regression. Jurnal Sistem Cerdas, 4(3), 155 - 160. https://doi.org/10.37396/jsc.v4i3.166
Section
Articles