Klasifikasi Gangguan Tidur REM Behaviour Disorder Berdasarkan Sinyal EEG menggunakan Machine Learning

  • Alvi Norma Utami Universitas Negeri Surabaya
Keywords: Sleep Disorders, REM Behavior Disorder, EEG, Extreme Learning Machine, Wavelet

Abstract

REM Behavior Disorder (RBD) is a sleep disorder characterized by the loss of normal muscle atony (loss of paralysis) during Rapid Eye Movement (REM) sleep, where sufferers act on dreams that can result in physical injury to individuals or their sleep partners. REM is a sleep stage characterized by cessation of eye movement, a decrease in body temperature, slow heart rate and no muscle activity in several parts of the body. One of the methods used to detect RBD is Electroencephalography (EEG). EEG is a method of recording or capturing electrical activity in the brain. The dataset used was sourced from PhysioNet.org which consisted of 2 classes, namely normal class and RBD class which were taken from 26 subjects with 6 normal subjects and 20 RBD subjects. This research was conducted to classify RBD sleep disorders based on EEG signals using the ELM algorithm and it is expected to determine the best algorithm for classifying RBD sleep disorders using the ELM algorithm which will be compared with the SVM and backpropagation algorithms based on the EEG signal in terms of the resulting accuracy value and also the time required. to create a model in the algorithm classification process. Classification of RBD sleep disorders based on EEG signals begins with data pre-processing, feature extraction and classification. Data pre-processing includes signal splitting per 30 seconds and data smoothing. The feature extraction process uses Discrete Wavelet Transformation. The RBD classification process based on EEG signals uses the Extreme Learning Machine (ELM) algorithm with the binary sigmoid activation function. Prior to the training process on the ELM algorithm, undersampling was first carried out to overcome the imbalance in the number of classes. Evaluation of the classification results is done by using k-fold cross-validation. The classification results of RBD sleep disorders based on EEG signals using the ELM algorithm show that the ELM algorithm can classify RBD and non-RBD sleep disorders based on EEG signals with an average accuracy value of 70.71% ± 5.44. The comparison result states that the backpropagation algorithm has the best average accuracy in RBD classification based on EEG signals, reaching 83.81% ± 1.40. However, based on the computation of time, the ELM algorithm is superior in the speed of the RBD classification process based on EEG signals, reaching 0.04 ± 0.06 seconds compared to the Support Vector Machine (SVM) algorithm and backpropagation.

Downloads

Download data is not yet available.

References

Indrawati, L., & Nuryanti, L. (2018). Hubungan Posisi Tidur dengan Kualitas Tidur Pasien Congestive Heart Failure. Jurnal Kesehatan Budi Luhur Cimahi, Volume 11 Nomor 2.

Yulia, M., Anita, & Miranda, C. (2019). Klasifikasi Sinyal EEG dengan Stimulasi Aromatik Menggunakan Metode Support Vector Machine. Jurnal Ilmu Komputer dan Bisnis, Volume 10, Nomor 1, Mei 2019.

Sunwoo, J.-S., Lee, S., Kim, J.-H., Lim, J.-A., Kim, T.-J., Byun, J.-I., . . . Jung, K.-Y. (2017). Altered Functional Connectivity in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: A restin-State EEG Study. SLEEP, Vol. 40, No. 6.

Hogl, B., & Stefani, A. (2017). REM Sleep Behavior Disorder (RBD) Update on Diagnosis and Treatment. Somnologi, Volume 21, Supplement 1, pp 1-8.

Clinic, M. (2018). Mayo Clinic. Diambil kembali dari Mayo Clinic: https://www.mayoclinic.org/diseases-conditions/rem-sleep-behavior-disorder/symptoms-causes/syc-20352920.

Pramartaningthyas, E. K., & M., M. S. (2017). Optimasi Daya Spektral Pada Sinyal Lemah Electroencrphalography (EEG) dengan Metode Algoritma Genetik. Multitek Indonesia Jurnal Ilmiah, Vol. 11 , No. 2,Desember 2017.

Fauzan, A. D., Lailiyya, N., Kusumandari, D. E., & Suratman, F. Y. (2019). Analisa Pengaruh Rangsangan Aromaterapi Lavender dan Kayu Cendana Terhadap Kualitas Tidur Berbasis Gelombang EEG. Jurnal TEKTRIKA, Vol. 4, No. 1.

Arnaldi, D., Antelmi, E., St. Louis, E., Postuma, R., & Arnulf, I. (2017). Idiopathic REM Sleep Behavior Disorder and Neurodegenerative risk : to tell or not to tell to the patient? how to minimize the risk? Sleep Medicine Reviews, Volume 36, 82-95.

Ruffini, G., Ibanez, D., Castellano, M., Dunne, S., & Soria-Frisch, A. (2016). EEG-driven RNN Classification for Prognosis of Neurodegeneration in At-Risk Patients. International Conference on Artificial Neural Networks 2016 (pp. 306-313). Springer Link.

Ruffini, G., Ibanez, D., Castellano, M., Dubreuil-Vail, L., Soria-Frisch, A., Postuma, R., . . . Montplaisir, J. (2019). Deep Learning With EEG Spectograms in Rapid Eye Movement Behavior Disorder. Frontiers in Neurology, 10:806.

Cooray, N., Andreotti, F., Symmods, M., Hu, M., & Vos, M. (2019). Detection of REM Sleep Behaviour Disorder by Automated Polysomnography Analysis. Clinical Neurophysiology, Volume 130, Issue 4, 505-514.

Fikriya, Z. A., Irawan, M. I., & Soetrisno. (2017). Implementasi Extreme Learning Machine untuk Pengenalan Objek Citra Digital. Jurnal Sains dan Seni ITS Vol. 6, No. 1, 2337-3520.

Irawan, D. P., Cholissodin, I., & Santoso, E. (2018). Klasifikasi Risiko Gagal Ginjal Kronis Menggunakan Extreme Learning Machine. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. 2, No. 11, 5220-5228.

Waskito, S. B., Cholissodin, I., & Santoso, E. (2019). Implementasi Algoritma Extreme Learning Machine (ELM) untuk Klasifikasi Penanganan Human Papilloma Virus (HPV). Jurnal Pengenmbangan Teknologi Informai dan Ilmu Komputer. Vol. 3,No. 1, 84-89.

Raposo, A., Vicens, L., Clithero, J. A., Dobbins, I. G., & Huettel, S. A. (2011). Contributions of frontopolar cortex to judgments about self, others and relations. Social Cognitive and Affective Neuroscience, 6(3), 260-269.

Lusiawati, I. (2017). Pengembangan Otak Dan Optimalisasi Sumber Daya Manusia. Jurnal TEDC, 11(2), 162-171.

Wulandari, I. N., & Juniati, D. (2017). Penerapan Dimensi Fraktal Untuk Klasifikasi Laras Pada Musik Gamelan. Jurnal Ilmiah Matematika, Volume 3 No.6.

Hasanah, N., Muljono, A. B., & Suksmadana, I. B. (2018). Penentuan Lokasi Gangguan Hubung Singkat Pada Saluran Transmisi 150 KV Berbasis Transformasi Wavelet. Dielektrika, Vol. 5, No. 1, 42-47.

Arif, A., & Djamal, E. (2014). Klasifikasi TIngkat Kelelahan Berdasarkan Sinyal Electroencephalogram (EEG) Menggunakan Jaringan Syaraf Tiruan Backpropagation. SNIJA Unjani.

Ekayama, R., Djamal, E., & Komarudin, A. (2016). Identifikasi Kondisi Rileks dari Sinyal EEG menggunakan Wavelet dan Learning Vector Quantization. Prosiding SNST ke-7 Fakultas Teknik Universitas Wahid Hasyim Semarang.

Karmila, R., Djamal, E., & Nursantika, D. (2016). Identifikasi Tingkat Konsentrasi dari Sinyal EEG Wavelet dan Adaptive Backpropagation. SNATi 2016.

Irawan, E., & Wahono, R. S. (2015). Penggunaan random under sampling untuk penanganan ketidakseimbangan kelas pada prediksi cacat software berbasis neural network. IlmuKomputer. com Journal of Software Engineering, 1(2), 92-100.

Sugianto, N. A., Cholissodin, I., & Widodo, A. W. (2018). Klasifikasi Keminatan Menggunakan Algorite Extreme Learning Machine dan Particle Swarm Optimization untuk Seleksi Fitur (Studi Kasus : Program Studi Teknik Informatika Filkom UB). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 2, No.5, 1856-1865.

Prakoso, E. C., Wisesty, U. N., & Jondri. (2016). Klasifikasi Keadaan Mata Berdasarkan Sinyal EEG Menggunakan Extreme Learning Machines. Ind. Journal on Computing. Vol. 1, Issue 2, 97-116.

physionet.org. (2012). Dipetik 10 Desember, 2019, dari physio.net: https://physionet.org/content/capslpdb/1.0.0/

MG Terzano, L Parrino, A Sherieri, R Chervin, S Chokroverty, C Guilleminault, M Hirshkowitz, M Mahowald, H Moldofsky, A Rosa, R Thomas, A Walters. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med 2001 Nov; 2(6):537-553.

Indrayanti, Sugianti, D., & Karomi, M. A. (2017). Peningkatan akurasi Algoritma KNN dengan Seleksi Fitur Gain Ratio untuk Klasifikasi Penyakit Diabetes Mellitus. IC-Tech Volume XII No. 2.

Khadijah, & Kusumaningrum, R. (2019). Ensemble Classifier untuk Klasifikasi Kanker Payudara. IT Journal Research and Development (ITJRD), Vol.4, No.1, 61-71.

Pristyanto, Y. (2019). Penerapan Metode Ensemble Untuk Meningkatkan Kinerja Algoritme Klasifikasi Pada Imbalanced Dataset. Jurnal Teknoinfo, 13(1), 11-16.

Kom, O. P. B. S., & Ronaldo, R. (2019). Perbandingan Metode Extreme Learning Machine Dan Backpropagation Untuk Mengklasifikasi Phising Webssites. Journal of Informatics Engineering Research and Technology, 1(1).

Irawan, M. I., & Imah, E. M. (2015). Study Comparison Backpropogation, Support Vector Machine, and Extreme Learning Machine for Bioinformatics Data. Jurnal Ilmu Komputer dan Informasi, 8(1), 53-59.

Published
2020-12-29
How to Cite
Alvi Norma Utami. (2020). Klasifikasi Gangguan Tidur REM Behaviour Disorder Berdasarkan Sinyal EEG menggunakan Machine Learning. Jurnal Sistem Cerdas, 3(3), 216 - 230. https://doi.org/10.37396/jsc.v3i3.68