Predictive Analitycs Menggunakan Machine Learning Untuk Memprediksi Waktu Keterlambatan Berdasarkan Penyebab Keterlambatan Pada PT. Kereta Api Indonesia

  • Christopher Sanjaya Institut Teknologi Bandung
  • Suhono Harso Supangkat Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung
Keywords: KAI, Machine learning, delay prediction, Cibatu Purwakarta lane

Abstract

Abstract - PT. Kereta Api Indonesia (KAI) is a company that regulates trains in Indonesia. Railways in Indonesia still often experience delays, especially in the Cibatu Purwakarta lane which will be the object of research in this study. This research is intended as an initial stage of applying machine learning to overcome the problem of tardiness by providing the best model for predicting tardiness and what things are causing the tardiness pattern. Machine learning models considered are decision tree regression, support vector machine regression, random forest regression, ensemble learning, and gradient boosting regression. From the best machine learning techniques, a model will be made to predict the delay based on the cause of the delay.

Keywords – KAI, machine learning, predict the delay, cause of delay, Cibatu Purwakarta lane

Downloads

Download data is not yet available.

References

Robert N, Kim H, “Predictions of train delays using machine learning”, 2018

Ramashish G, Biplav S, “Estimating Train Delays in a Large Rail Network Using Zero Shot Markov Model, 2018

Pu W, Qing-peng Z,”Train delay analysis and prediction based on big data fusion”, 2019

William A R, Gary E, “The Team Data Science Process lifecycle”, 2020, diambil dari https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle pada tanggal 2 Maret 2020 Pukul 15.31

T.Chai, R.R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature”, 2014

Aurelien G, “Hands On Machine learning With Scikit-Learn & Tensorflow”, 2017

Olsson NOE, Haugland H. Influencing factors on train punctuality—results from some Norwegian studies. Transp Policy 2004;11:387–397.

Published
2020-08-31
How to Cite
Sanjaya, C., & Supangkat, S. H. (2020). Predictive Analitycs Menggunakan Machine Learning Untuk Memprediksi Waktu Keterlambatan Berdasarkan Penyebab Keterlambatan Pada PT. Kereta Api Indonesia. Jurnal Sistem Cerdas, 3(1), 165 - 180. https://doi.org/10.37396/jsc.v3i2.59