Balance Control of a Hexapod Robot Using Fuzzy Logic and Inverse Kinematics Algorithm with Real-Time IMU Sensor Measurement
Abstract
Robotic technology is a crucial pillar in modern civilization, especially in high-risk environments such as post-disaster evacuation scenarios. Hexapod legged robots are designed to navigate uneven terrains that are inaccessible to humans. Although hexapods offer superior mobility and flexibility, they face stability challenges when moving on inclined surfaces due to uneven load distribution, which can affect servo motor performance. To address this issue, this study implements a control system combining fuzzy logic and inverse kinematics to maintain body stability. An Inertial Measurement Unit (IMU) sensor is also integrated to detect the robot’s orientation angle in real-time, enabling adaptive posture correction. This research focuses on three main problems: first, how inverse kinematics can stabilize hexapod posture on sloped surfaces; second, how IMU sensors detect inclination and orientation; and third, how fuzzy logic control contributes to balance regulation. The methodology involves system design, experimental testing, and performance analysis based on the robot's body tilt measurements across various inclinations. The results show that the proposed system responds effectively to surface tilt, particularly in pitch angle correction and maintaining a neutral position. Inverse kinematics successfully calculates leg configurations to keep the body posture stable. The IMU sensor demonstrates high accuracy in angle detection, while fuzzy logic provides flexibility in decision-making for posture control. The integration of these three approaches proves effective in maintaining hexapod balance on inclined terrains, thus supporting their potential use in complex, unstable environments.
Downloads
References
J. Ma, G. Qiu, W. Guo, P. Li, and G. Ma, “Design, analysis and experiments of hexapod robot with six-link legs for high dynamic locomotion,” Micromachines, vol. 13, no. 9, p. 1404, 2022.
E. C. Orozco-Magdaleno, D. Cafolla, E. Castillo-Castaneda, and G. Carbone, “Static balancing of wheeled-legged hexapod robots,” Robotics, vol. 9, no. 2, p. 23, 2020.
L. Zhang, F. Wang, Z. Gao, S. Gao, and C. Li, “Research on the stationarity of hexapod robot posture adjustment,” Sensors, vol. 20, no. 10, p. 2859, 2020.
Z. Zhang, W. He, F. Wu, L. Quesada, and L. Xiang, “Development of a bionic hexapod robot with adaptive gait and clearance for enhanced agricultural field scouting,” Front. Robot. AI, vol. 11, p. 1426269, 2024.
C. Chen, J. Lin, B. You, J. Li, and B. Gao, “Hexapod robot motion planning investigation under the influence of multi-dimensional terrain features,” Front. Neurorobot., vol. 19, p. 1605938, 2025.
J. Coelho, F. Ribeiro, B. Dias, G. Lopes, and P. Flores, “Trends in the control of hexapod robots: a survey,” Robotics, vol. 10, no. 3, p. 100, 2021.
B. You, X. Chen, J. Li, L. Ding, and Z. Dong, “Human-robot collaborative decision method of hexapod robot based on prior knowledge and negotiation strategy,” Knowledge-Based Syst., vol. 304, p. 112551, 2024.
F. Lai, X. Zhang, G. Chen, and W. Gan, “Mining periodic high-utility itemsets with both positive and negative utilities,” Eng. Appl. Artif. Intell., vol. 123, p. 106182, 2023, doi: https://doi.org/10.1016/j.engappai.2023.106182.
A. J. Ijspeert, “Central pattern generators for locomotion control in animals and robots: a review,” Neural networks, vol. 21, no. 4, pp. 642–653, 2008.
M. H. Raibert and E. R. Tello, “Legged Robots That Balance,” IEEE Expert, vol. 1, no. 4, p. 89, 1986, doi: 10.1109/MEX.1986.4307016.
C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter, “Dynamic Locomotion Through Online Nonlinear Motion Optimization for Quadrupedal Robots,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2261–2268, 2018, doi: 10.1109/LRA.2018.2794620.
W. Huo, S. Mohammed, Y. Amirat, and K. Kong, “Fast Gait Mode Detection and Assistive Torque Control of an Exoskeletal Robotic Orthosis for Walking Assistance,” IEEE Trans. Robot., vol. 34, no. 4, pp. 1035–1052, 2018, doi: 10.1109/TRO.2018.2830367.
U. Farooq, M. U. Asad, M. Amar, A. Hanif, and S. O. Saleh, “Fuzzy Logic Based Real Time Obstacle Avoidance Controller for a Simplified Model of Hexapod Walking Robot,” Int. J. Comput. Electr. Eng., vol. 6, pp. 127–131, Jan. 2014, doi: 10.7763/IJCEE.2014.V6.808.
S. Yang, Z. Zhang, B. Bokser, and Z. Manchester, Multi-IMU Proprioceptive Odometry for Legged Robots. 2023. doi: 10.1109/IROS55552.2023.10342061.
S. Arrigoni, M. Zangrandi, G. Bianchi, and F. Braghin, “Control of a Hexapod Robot Considering Terrain Interaction,” Robotics, vol. 13, p. 142, Sep. 2024, doi: 10.3390/robotics13100142.
M. Žák, J. Rozman, and F. V Zbořil, “Energy Efficiency of a Wheeled Bio-Inspired Hexapod Walking Robot in Sloping Terrain,” Robotics, vol. 12, no. 2, p. 42, 2023.
K. Xu, Y. Lu, L. Shi, J. Li, S. Wang, and T. Lei, “Whole-body stability control with high contact redundancy for wheel-legged hexapod robot driving over rough terrain,” Mech. Mach. Theory, vol. 181, p. 105199, 2023, doi: https://doi.org/10.1016/j.mechmachtheory.2022.105199.
S. Godon, M. Kruusmaa, and A. Ristolainen, “Maneuvering on Non-Newtonian Fluidic Terrain: A Survey of Animal and Bio-Inspired Robot Locomotion Techniques on Soft Yielding Grounds,” Front. Robot. Ai, vol. 10, 2023, doi: 10.3389/frobt.2023.1113881.
V. Ušinskis, M. Nowicki, A. Dzedzickis, and V. Bučinskas, “Sensor-fusion based navigation for autonomous mobile robot,” Sensors, vol. 25, no. 4, p. 1248, 2025.
Z. Qiu, W. Wei, and X. Liu, “Adaptive Gait Generation for Hexapod Robots Based on Reinforcement Learning and Hierarchical Framework,” Actuators, vol. 12, p. 75, Feb. 2023, doi: 10.3390/act12020075.
F. Meng, “Design of Simulink-Based 3D Hexapod Robot Model and Implementation of Hexapod Robot Foothold Planning,” Acad. J. Comput. Inf. Sci., vol. 5, no. 3, 2022, doi: 10.25236/ajcis.2022.050307.
B. You, Y. Fan, and D. Liu, “Fault-Tolerant Motion Planning for a Hexapod Robot With Single-Leg Failure Using a Foot Force Control Method,” Int. J. Adv. Robot. Syst., vol. 19, no. 5, p. 172988062211210, 2022, doi: 10.1177/17298806221121070.
J. Coelho, B. Dias, G. Lopes, A. F. Ribeiro, and P. Flores, “Development and Implementation of a New Approach for Posture Control of a Hexapod Robot to Walk in Irregular Terrains,” Robotica, vol. 42, no. 3, pp. 792–816, 2023, doi: 10.1017/s0263574723001765.
H. Deng, G. Xin, G. Zhong, and M. Mistry, “Gait and Trajectory Rolling Planning and Control of Hexapod Robots for Disaster Rescue Applications,” Rob. Auton. Syst., vol. 95, pp. 13–24, 2017, doi: 10.1016/j.robot.2017.05.007.
M. Lycett, E. Marcos, and V. C. Storey, “Model-Driven Systems Development: An Introduction,” Eur. J. Inf. Syst., vol. 16, no. 4, pp. 346–348, 2007, doi: 10.1057/palgrave.ejis.3000684.
S. Erasmus and J. A. A. Engelbrecht, “Hexapod Guidance and Control for Autonomous Waypoint Navigation Over Uneven Terrain,” Matec Web Conf., vol. 370, p. 5005, 2022, doi: 10.1051/matecconf/202237005005.
K. Kartika and R. Muradi, “Fish Dryer With Temperature Control Using the Fuzzy Logic Method,” Int. J. Eng. Sci. Inf. Technol., no. Vol 3, No 1 (2023), pp. 1–8, 2023,
N. Harahap and K. Kartika, “Microcontroller-Based Gas Detection in Transformer Oil,” Int. J. Eng. Sci. Inf. Technol., vol. 2, no. 4, pp. 119–126, 2022, doi: 10.52088/ijesty.v2i4.380.
E. Hasan, M. Daud, H. M. Yusdartono, and K. Kartika, “Desain Kontrol Motor Brushless Direct Current (BLDC) Menggunakan Boost Converter,” Jetri J. Ilm. Tek. Elektro, vol. 20, no. 2, pp. 117–134, 2023, doi: 10.25105/jetri.v20i2.14945.
R. Li, H. Meng, S. Bai, Y. Yao, and J. Zhang, “Stability and Gait Planning of 3-Upu Hexapod Walking Robot,” Robotics, vol. 7, no. 3, p. 48, 2018, doi: 10.3390/robotics7030048.
I. K. Wibowo, D. Preistian, and F. Ardilla, “Kontrol Keseimbangan Robot Hexapod EILERO Menggunakan Fuzzy Logic,” Elkomika J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 3, p. 533, 2021, doi: 10.26760/elkomika.v9i3.533.
D. Soto-Guerrero, J. G. Ramírez-Torres, and E. Rodríguez-Tello, “Kinematic Tripod (K3P): A New Kinematic Algorithm for Gait Pattern Generation,” Appl. Sci., vol. 14, no. 6, p. 2564, 2024, doi: 10.3390/app14062564.
S. Stavrinidis, P. Zacharia, and E. K. Xidias, “A Fuzzy Control Strategy for Multi-Goal Autonomous Robot Navigation,” Sensors, vol. 25, no. 2, p. 446, 2025, doi: 10.3390/s25020446.
H. S. Purnama, T. Sutikno, N. S. Widodo, and S. Alavandar, “Efficient PID Controller Based Hexapod Wall Following Robot,” Proceeding Electr. Eng. Comput. Sci. Informatics, vol. 6, no. 1, 2019, doi: 10.11591/eecsi.v6.1998.
T. Luneckas, “Analysis of Hexapod Robot Locomotion,” Moksl. - Liet. Ateitis, vol. 2, no. 1, pp. 36–39, 2010, doi: 10.3846/mla.2010.008.
Y. Prasetio and N. S. Widodo, “Hexapod Robot Movement Control for Uneven Terrain,” Control Syst. Optim. Lett., vol. 1, no. 2, pp. 82–86, 2023, doi: 10.59247/csol.v1i2.23.
K. Kumar, S. Deep, S. Suthar, M. G. Dastidar, and T. R. Sreekrishnan, “Application of Fuzzy Inference System (FIS) Coupled With Mamdani’s Method in Modelling and Optimization of Process Parameters for Biotreatment of Real Textile Wastewater,” Desalin. Water Treat., vol. 57, no. 21, pp. 9690–9697, 2016, doi: 10.1080/19443994.2015.1042062.
A. Charolina and F. Fitriyadi, “Fuzzy Mamdani Model for Assessing the Level of Service Satisfaction for Requirements of Social Welfare Services at the ‘Prof. Dr. Soeharso’ Integrated Center in Surakarta,” Int. J. Comput. Inf. Syst., vol. 5, no. 1, pp. 15–21, 2024, doi: 10.29040/ijcis.v5i1.152.
A. H. Wibowo, J. Susetyo, T. I. Oesman, and M. Y. Aliffian, “Proposed Control of Raw Material Inventory in Condition of Not Required With Fuzzy Mamdani Method in Cv. Pinus Bag’s Specialist,” Log. J. Ranc. Bangun Dan Teknol., vol. 20, no. 3, pp. 167–175, 2020, doi: 10.31940/logic.v20i3.1835.
J. Wang and A. Chortos, “Control Strategies for Soft Robot Systems,” Adv. Intell. Syst., vol. 4, no. 5, 2022, doi: 10.1002/aisy.202100165.
V. Barasuol et al., “Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control,” Front. Robot. Ai, vol. 5, 2018, doi: 10.3389/frobt.2018.00051.
T. Kano, Y. Ikeshita, A. Fukuhara, and A. Ishiguro, “Body-Limb Coordination Mechanism Underlying Speed-Dependent Gait Transitions in Sea Roaches,” Sci. Rep., vol. 9, no. 1, 2019, doi: 10.1038/s41598-019-39862-3.