Real-Time Multiface Mask Automatic Detection System in Classroom Learning using YOLOv4 Deep Learning

Keywords: Multiface Mask, Covid-19, Real-Time Image, YOLOv4, Deep Learning

Abstract

During the Covid-19 pandemic, students were required to wear masks in classroom learning. However, students often do not use masks, so they are prone to transmission of Covid-19. For this reason, this study proposes the development of a real-time multi-face mask automatic detection system in classroom learning using YOLOv4 deep learning. Experimental results on 22 samples of students who collected real-time/live video data every 3 minutes for 20 scenarios proved that the proposed system was successful in detecting objects wearing masks (PM) and not wearing masks (TPM) with the average percentage of precision was 95.63% for PM and 97.33% for TPM, the average percentage of recall was 61.61% for PM and 60.23% for TPM, and the average percentage of F-measure was 74.55% for PM and 74.00% for TPM. This results indicate an effective, valid and accurate proposed system for monitoring the use of masks in classroom learning easily and automatically.

Downloads

Download data is not yet available.

Author Biographies

Arif Fadllullah, Universitas Borneo Tarakan

Jurusan Teknik Komputer, Fakultas Teknik

Rahmatuz Zulfia, Universitas Borneo Tarakan

Jurusan Keperawatan, Fakultas Ilmu Kesehatan

Tegar Palyus Fiqar, Institut Teknologi Kalimantan

Jurusan Matematika dan Teknologi Informasi

Awang Pradana, Universitas Borneo Tarakan

Jurusan Teknik Komputer, Fakultas Teknik

References

A. Wahyudi, “Learning Loss During Covid-19 Pandemic in Indonesia and The Strategies to Minimize it,” J. English Educ. Linguist., vol. 2, no. 2, hal. 18–25, 2021.

C. F. Pasani dan R. Amelia, “Learning Loss and Education Inequality in Indonesia ( Mapping the Potential , Consequences , and the Covid-19 Crisis ),” Review of International Geographical Education, vol. 11, no. 10. hal. 1171–1181, 2021.

S. I. Mawarni dan W. Syafitri, “DIGITALISASI DAN PENGANGGURAN DI PEDESAAN JAWA TIMUR PADA MASA PANDEMI COVID-19 (STUDI KASUS PADA SEKTOR INFORMAL),” Contemp. Stud. Econ. Financ. Bank., vol. 2, no. 1, hal. 156–167, 2023.

T. Tamara, “Gambaran Vaksinasi COVID-19 di Indonesia pada Juli 2021,” Medula, vol. 11, no. 1. hal. 180–183, 2021.

P. Maria, F. Akbar, A. Ullah, dan H. Zarory, “Kunci Kelas Terjadwal Teknik Elektro UIN SUSKA Riau Berbasis RFID dan IoT,” J. Sist. Cerdas, vol. 6, no. 1, hal. 19–28, Apr 2023, doi: 10.37396/jsc.v6i1.282.

I. S. Joyosemito dan N. M. Nasir, “Gelombang Kedua Pandemi Menuju Endemi Covid-19: Analisis Kebijakan Vaksinasi Dan Pembatasan Kegiatan Masyarakat Di Indonesia,” Jurnal Sains Teknologi dalam Pemberdayaan Masyarakat, vol. 2, no. 1. hal. 55–66, 2021, doi: 10.31599/jstpm.v2i1.718.

I. B. M. Gandamayu, N. W. S. Antari, dan I. A. S. Strisanti, “The level of community compliance in implementing health protocols to prevent the spread of COVID-19,” Int. J. Heal. Med. Sci., vol. 5, no. 2, hal. 177–182, 2022.

Y. Adinata, K. Gunadi, dan I. Sugiarto, “Aplikasi Deteksi Jumlah Orang pada Area Indoor Untuk Mendukung Pelaksanaan PPKM dengan Metode YOLO,” J. Infra, vol. 10, no. 1, hal. 135–141, 2022.

F. A. Hermawati dan R. A. Zai, “Sistem Deteksi Pemakaian Masker Menggunakan Metode Viola-Jones dan Convolutional Neural Networks (CNN),” in Konferensi Nasional Ilmu Komputer (KONIK) 2021, 2021, hal. 182–187.

M. Aminullah, “Alat Deteksi Masker Dengan Metode Convolutional Neural Network Untuk Tunanetra Pada Era New Normal,” in Seminar Nasional Fortei Regional 7, 2020, hal. 321–324.

F. L. Ahmad, A. Nugroho, dan A. F. Suni, “Deteksi Pemakai Masker Menggunakan Metode Haar Cascade Sebagai Pencegahaan COVID 19,” Edu Elektr. J., vol. 10, no. 1, hal. 13–18, 2021.

G. Aprilian Anarki, K. Auliasari, dan M. Orisa, “PENERAPAN METODE HAAR CASCADE PADA APLIKASI DETEKSI MASKER,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, hal. 179–186, 2021, doi: 10.36040/jati.v5i1.3214.

R. R. Ramdhani, R. I. Adam, dan A. A. Ridha, “Implementasi Deep Learning untuk Deteksi Masker,” J. Inf. Technol. Comput. Sci., vol. 4, no. 2, hal. 384–391, 2021.

L. Agustien, T. Rahman, dan A. W. Hujairi, “Real-time Deteksi Masker Berbasis Deep Learning menggunakan Algoritma CNN YOLOv3,” J. Teknol. Inf. dan Terap., vol. 8, no. 2, hal. 129–137, 2021, doi: https://doi.org/10/25047/jtit.v8i2.246.

A. Bochkovskiy, C.-Y. Wang, dan H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv Prepr. arXiv2004.10934, hal. 1–17, 2020, doi: 10.48550/arXiv.2004.10934.

T. M. Đức dan N. T. Hương, “Improvement of Vehicle detection and classification performance with Region of Interest,” ITEJ (Information Technol. Eng. Journals), vol. 8, no. 1, hal. 34–41, Jul 2023, doi: 10.24235/itej.v8i1.116.

C.-Y. Wang, A. Bochkovskiy, dan H.-Y. M. Liao, “Scaled-yolov4: Scaling cross stage partial network,” in Proceedings of the IEEE/cvf conference on computer vision and pattern recognition, 2021, hal. 13029–13038, doi: 10.48550/arXiv.2011.08036.

J. Redmon, S. Divvala, R. Girshick, dan A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection.”

Z. Yao, Y. Cao, S. Zheng, G. Huang, dan S. Lin, “Cross-Iteration Batch Normalization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, hal. 12331–12340.

S. Degadwala, D. Vyas, U. Chakraborty, A. R. Dider, dan H. Biswas, “Yolo-v4 Deep Learning Model for Medical Face Mask Detection,” in 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 2021, hal. 209–213, doi: 10.1109/ICAIS50930.2021.9395857.

I. A. Dahlan, D. Ariateja, M. A. Arghanie, M. A. Versantariqh, M. David, dan U. D. Fatmawati, “Sistem Deteksi Senjata Otomatis Menggunakan Deep Learning Berbasis CCTV Cerdas,” J. Sist. Cerdas, vol. 4, no. 2, hal. 126–141, Agu 2021, doi: 10.37396/jsc.v4i2.172.

T. J. Lakshmi, N. M. R. Karri, N. B. K. Y. Teluguntla, J. Vallabhaneni, dan G. K. Nanduri, “Facemask Detection Using Machine Learning Techniques: A Review,” Webology (ISSN: 1735-188X), vol. 19, no. 1, 2022.

D. I. Mulyana, A. C. Aditya, S. Amelia, dan S. Agustiansyah, “Implementasi Framework Mask R-CNN Object Detection API Dalam Mengklasifikasi Jenis Kendaraan Bermotor,” J. Tek. Elektro dan Komputasi, vol. 4, no. 1, hal. 63–72, 2022, doi: 10.32528/elkom.v4i1.7148.

Published
2024-08-27
How to Cite
Arif Fadllullah, Rahmatuz Zulfia, Tegar Palyus Fiqar, & Awang Pradana. (2024). Real-Time Multiface Mask Automatic Detection System in Classroom Learning using YOLOv4 Deep Learning. Jurnal Sistem Cerdas, 7(2), 144 - 154. https://doi.org/10.37396/jsc.v7i2.391
Section
Articles