Sistem Klarifikasi Bahasa Isyarat Indonesia (Bisindo) Dengan Menggunakan Algoritma Convolutional Neural Network
Abstract
Communication is needed to interact and socialize in order to connect with the environment
and other people. In general, communication uses spoken or written words. However, in some cases in the
community there are some people who cannot communicate verbally due to physical limitations such as deaf
and speech impaired. Usually, they use nonverbal communication such as body movements and this
communication is commonly referred to as sign language. The sign language method is used to spell or
pronounce words. However, not everyone can understand the sign language used by the deaf and mute, so a
system or tool is needed to bridge communication between the deaf or mute and normal people. One solution
that can be offered is the use of computer technology as a tool to identify sign language. The technology is in
the form of an automatic language translator system design with processing input images in the form of letter
classes A to E, I, You and I Love You using the Convolutional Neural Network (CNN) architecture which by
using this method the accuracy value can reach 99.82%.
Downloads
References
B. D. Ruben and L. Stewart, Communication and Human Behavior. Pearson/Allyn & Bacon, 2006. [Online]. Available: https://books.google.co.id/books?id=PEVLPgAACAAJ
L. Komala, Ilmu komunikasi : perspektif, proses, dan konteks, 1st ed. Bandung: [Bandung] : Widya Padjadjaran, 2009. [Online]. Available: http://lib-fikom.yai.ac.id/index.php?p=show_detail&id=4370
K. Sosial, “Sistem Informasi Management Penyandang Disabilitas,” Kementerian Sosial Republik Indonesia, 2022. https://simpd.kemensos.go.id/ (accessed Mar. 24, 2022).
Kemendikbud, “Kamus SIBI,” Lembaga Penelitian dan Pengembangan Sistem Isyarat Bahasa Indonesia, 2020. https://pmpk.kemdikbud.go.id/sibi/ (accessed Mar. 28, 2022).
M. Susanty, R. Z. Fadillah, and A. Irawan, “Model Penerjemah Bahasa Isyarat Indonesia (BISINDO) Menggunakan Pendekatan Transfer Learning,” PETIR, vol. 15, no. 1, pp. 1–9, Dec. 2021, doi: 10.33322/petir.v15i1.1289.
P. B. I. Indonesia, “Asal Usul BISINDO dan PUSBISINDO,” 2009. https://pusbisindo.org/tentang-kami (accessed Apr. 30, 2022).
Srisaan Ploychompu, “Good signs: Japan’s APU graduate creates successful deaf cafe in Indonesia | Japan Subculture Research Center,” Aug. 07, 2017. http://www.japansubculture.com/good-signs-japans-apu-graduate-creates-successful-deaf-cafe-in-indonesia/ (accessed Aug. 14, 2022).
R. A. Mursita, “RESPON TUNARUNGU TERHADAP PENGGUNAAN SISTEM BAHASA ISYARAT INDONESA (SIBI) DAN BAHASA ISYARAT INDONESIA (BISINDO) DALAM KOMUNIKASI,” INKLUSI, vol. 2, no. 2, p. 221, Dec. 2015, doi: 10.14421/ijds.2202.
M. Sewak, R. Karim, and P. Pujari, Practical Convolutional Neural Networks. 2018.
D. Arya et al., “Transfer Learning-based Road Damage Detection for Multiple Countries,” pp. 1–16, Aug. 2020, Accessed: Aug. 18, 2022. [Online]. Available: http://arxiv.org/abs/2008.13101
J. Brownlee, “Deep Learning for Computer Vision Image Classification , Object Detection , and Face Recognition in Python UNLOCK Computer Vision With Deep Learning,” Deep Learn. Comput. Vis., pp. 1–21, 2019, [Online]. Available: https://machinelearningmastery.com/deep-learning-for-computer-vision/
P. Ahamed, S. Kundu, T. Khan, V. Bhateja, R. Sarkar, and A. F. Mollah, “Handwritten Arabic numerals recognition using convolutional neural network,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 11, pp. 5445–5457, Nov. 2020, doi: 10.1007/s12652-020-01901-7.
C. C. Aggarwal, Neural Networks and Deep Learning. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-94463-0.
J. Wu, “Introduction to Convolutional Neural Networks,” in Introduction to Convolutional Neural Networks, 2017, pp. 1–31. [Online]. Available: https://web.archive.org/web/20180928011532/https://cs.nju.edu.cn/wujx/teaching/15_CNN.pdf
T. Developers, “TensorFlow,” May 2022, doi: 10.5281/ZENODO.6574269.
“About Colaboratory - ML EDU Help.” https://support.google.com/machinelearningeducation/answer/7656404?hl=en&ref_topic=7654357 (accessed Aug. 23, 2022).
J. Huang, W. Zhou, H. Li, and W. Li, “Attention-Based 3D-CNNs for Large-Vocabulary Sign Language Recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 9, pp. 2822–2832, Sep. 2019, doi: 10.1109/TCSVT.2018.2870740.
M. M. Hasan, A. Y. Srizon, A. Sayeed, and M. A. M. Hasan, “Classification of American Sign Language by Applying a Transfer Learned Deep Convolutional Neural Network,” in 2020 23rd International Conference on Computer and Information Technology (ICCIT), Dec. 2020, pp. 1–6. doi: 10.1109/ICCIT51783.2020.9392703.
D. DARMATASIA, “PENGENALAN SISTEM ISYARAT BAHASA INDONESIA (SIBI) MENGGUNAKAN GRADIENT-CONVOLUTIONAL NEURAL NETWORK,” J. INSTEK (Informatika Sains dan Teknol., vol. 6, no. 1, p. 56, Jan. 2021, doi: 10.24252/instek.v6i1.18637.
O. Kembuan, G. Caren Rorimpandey, and S. Milian Tompunu Tengker, “Convolutional Neural Network (CNN) for Image Classification of Indonesia Sign Language Using Tensorflow,” in 2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS), Oct. 2020, no. 26, pp. 1–5. doi: 10.1109/ICORIS50180.2020.9320810.
O. Rukundo, “Effects of Image Size on Deep Learning,” no. August, Jan. 2021, [Online]. Available: http://arxiv.org/abs/2101.11508
O. Rukundo, “EFFECTS OF IMAGE SIZE ON DEEP LEARNING Olivier Rukundo Department of Clinical Physiology, Lund University”, doi: https://doi.org/10.48550/arXiv.2101.11508.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.
D. Stathakis, “How many hidden layers and nodes?,” Int. J. Remote Sens., vol. 30, no. 8, pp. 2133–2147, 2009, doi: 10.1080/01431160802549278.
S. Andi Aljabar, A. Aljabar, and S. Suharjito, “BISINDO ( Bahasa Isyarat Indonesia ) Sign Language Recognition Using CNN and LSTM,” Adv. Sci. Technol. Eng. Syst. J., vol. 5, no. 5, pp. 282–287, 2020, doi: 10.25046/aj050535.
“Keras predict | What is Keras predict with Examples?” https://www.educba.com/keras-predict/ (accessed Oct. 29, 2022).