Classification of High School History Questions Based on Cognitive Level Revised Bloom's Taxonomy Using K-Nearest Neighbor Method
Abstract
Education plays an important role in transmitting knowledge to its students and to measure how well the student understands, testing is needed based on the cognitive level of knowledge. In measuring the cognitive level, it can be applied with reference to the Revised Bloom's Taxonomy which explains the regulation of learning processes and targets. Then by testing knowledge through the questions that have been made, it is necessary to classify the questions into several cognitive levels according to Revised Bloom's Taxonomy to determine the learning process and understanding of each individual. Many types of questions that are formed make classification difficult because the method is still done manually, therefore machine learning is needed. This study will focus on the classification of questions from the History subject in high school. The dataset used is downloaded from internet searches of USBN, PAS, PTS, and other exams. This study focuses on RBT C4 to C6 only. This study uses the K-Nearest Neighbor algorithm to obtain accuracy and with the imbalance of data in the dataset, an oversampling method using SMOTE will also be used. The accuracy results obtained are precision is 76%, recall is 76%, f1-score is 74%, accuracy is 76%.
Keywords—question classification, KNN, high school history, SMOTE, RBT, oversampling
Downloads
References
I. W. C. Sujana, “FUNGSI DAN TUJUAN PENDIDIKAN INDONESIA.,” Jurnal Pendidikan Dasar, pp. 30–31, 2019.
E. Poerwanti, Standar Penilaian Badan Standar Nasional Pendidikan (BNSP). 2008.
BPSI, “ndang-Undang Republik Indonesi No. 20 Tahun 2003 Tentang Sitem Pendidikan Nasional,” http://lppro.pancabudi.ac.id/new/pages/read/undangundang-republik-indonesi-no-20-tahun-2003-tentang-sitem-pendidikan-nasional, 2014.
N. D. Ahmad, W. A. W. Adnan, M. A. Aziz, and M. Y. Yusof, “Automating Preparation of Exam Questions: Exam Question Classification System (EQCS),” in 2011 International Conference on Research and Innovation in Information Systems (ICRIIS), 2011, pp. 1–6.
P. Armstrong, “Bloom’s Taxonomy,” Vanderbilt University Center for Teaching, 2016.
M. Forehand, “Bloom’s Taxonomy,” http://epltt.coe.uga.edu/index.php?title=Bloom%27s_Taxonomy, 2017.
A. Aninditya, M. A. Hasibuan, and E. Sutoyo, “Text Mining Approach Using TF-IDF and Naive Bayes for Classification of Exam Questions Based on Cognitive Level of Bloom’s Taxonomy,” in 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), 2019, pp. 112–117.
I. Listiowarni and N. P. Dewi, “Pemanfaatan Klasifikasi Soal Biologi Cognitive Domain Bloom’s Taxonomy Menggunakan KNN Chi-Square Sebagai Penyusunan Naskah Soal,” Digital Zone: Jurnal Teknologi Informasi & Komunikasi, vol. 11, no. 2, pp. 185–195, 2020, doi: 10.31849/digitalzone.v11i2.4798ICCS.
Y. Pantiwati and F. H. Permana, “ANALISIS BUTIR SOAL OLEH MAHASISWA S1 PENDIDIKAN BIOLOGI UNIVERSITAS MUHAMMADIYAH MALANG (UMM) BERDASARKAN PISA DAN TAKSONOMI BLOOM REVISI,” in Seminar Nasional Kedua Pendidikan Berkemajuan dan Menggembirakan (The Second Progressive and Fun Education Seminar), 2017, pp. 707–716.
S. K. Patil and M. M. Shreyas, “A Comparative Study of Question Bank Classification based on Revised Bloom’s Taxonomy using SVM and K-NN,” in 2017 2nd International Conference On Emerging Computation and Information Technologies (ICECIT), 2017, pp. 1–7.
E. Budianita, Jasril, and L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi,” Jurnal Sains, Teknologi dan Industri, vol. 12, no. 2, pp. 242–247, 2015.
R. N. Whidhiasih, N. A. Wahanani, and Supriyanto, “KLASIFIKASI BUAH BELIMBING BERDASARKAN CITRA RED-GREEN-BLUE MENGGUNAKAN KNN DAN LDA,” Jurnal Penelitian Ilmu Komputer, System Embedded & Logic, vol. 1, no. 1, pp. 29–35, 2013.
O. Caelen, “A Bayesian interpretation of the confusion matrix,” Ann Math Artif Intell, vol. 81, no. 3–4, pp. 429–450, Dec. 2017, doi: 10.1007/s10472-017-9564-8.
X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, “An improved method to construct basic probability assignment based on the confusion matrix for classification problem,” Inf Sci (N Y), vol. 340–341, pp. 250–261, May 2016, doi: 10.1016/j.ins.2016.01.033.
R. Siringoringo, “Klasifikasi Data Tidak Seimbang Menggunakan Algoritma SMOTE dan K-Nearest Neighbour,” Journal Information System Development (ISD), vol. 3, no. 1, pp. 44–49, 2018.
G. Gumelar et al., “Kombinasi Algoritma Sampling dengan Algoritma Klasifikasi untuk Meningkatkan Performa Klasifikasi Dataset Imbalance,” in Prosiding Seminar Nasional Sistem Informasi dan Teknologi (SISFOTEK), 2021, pp. 250–255.
N. Noorhalim, A. Ali, and S. M. Shamsuddin, “Handling Imbalanced Ratio for Class Imbalance Problem Using SMOTE,” in Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017), 2019, pp. 19–30. doi: 10.1007/978-981-13-7279-7_3.
A. S. Callista, O. N. Pratiwi, and E. Sutoyo, “Questions Classification Based on Revised Bloom’s Taxonomy Cognitive Level using Naive Bayes and Support Vector Machine,” in Proceedings - 2021 4th International Conference on Computer and Informatics Engineering: IT-Based Digital Industrial Innovation for the Welfare of Society, IC2IE 2021, 2021, pp. 260–265. doi: 10.1109/IC2IE53219.2021.9649187.
J. Han, J. Pei, and H. Tong, Data Mining: Concepts and Techniques. 2012.
G. James, D. Witten, T. Hastie, and R. Tibshirani, “Data for an Introduction to Statistical Learning with Applications in R.,” Package ‘ISLR.’CRAN., 2017.
S. Santosa and R. Yuliantara, “MODEL PREDIKSI POLA LOYALITAS PELANGGAN TELEKOMUNIKASI MENGGUNAKAN NAIVE BAYES DENGAN OPTIMASI PARTICLE SWARM OPTIMIZATION,” Jurnal Teknologi Informasi, vol. 13, no. 2, pp. 154–169, 2017, [Online]. Available: http://research.





