Pemodelan Hubungan Kepadatan Penduduk dan Indeks KualitasUdara (IKU) di Indonesia Menggunakan Regresi Kuantil Smoothing Splines

  • You Ari Faeni Bandung Institute of Technology
Keywords: IKU, Population Density, Smoothing Splines, Quantile Regression

Abstract

The level of pollution in Indonesia is in the top 10 worst in the world. Judging from the Air Quality Index (IKU), there are 9 provinces that have KPI values ​​below the expected target. This paper aims to perform IKU modelling using the population density variable as a predictor variable. Modelling using linear regression in the parametric method cannot be used because the model residuals are not normally distributed, so a nonparametric smoothing splines approach is carried out. However, the presence of outliers in the smoothing splines residual model causes the residuals of the model to be too large so that it affects the prediction accuracy, so the smoothing splines quantile regression is used in the IKU modelling. Apart from using the median (quantile τ = 0.5), the quantiles of 0.2 were also used; 0.4; 0.6; and 0.8 to generate models at various quantiles. The results of the analysis using the R package quantreg Software prove that the smoothing splines (median) quantile regression model is more robust against the presence of outliers seen from the lower RMSE value than the smoothing splines regression model (mean). In addition, it is concluded that there are 5 provinces that are below the quantile 0.2, which means that the IKU level is very low or there is very high pollution based on the level of population density. Likewise, there are 3 provinces with KPI values ​​above the quantile of 0.8, which means they have very high IKU levels or areas with low levels of pollution.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik. 2017. Statistik Lingkungan Hidup Indonesia 2017. Jakarta: Badan Pusat Statistik.

Cheng, Zhen, et.al. 2013. Characteristics and health impacts of particulate matter pollution in China (2001–2011). Atmospheric Environment, 65, Pages 186-194

Greenpeace. Data Terkini Kualitas Udara Kota-kota di Seluruh Dunia. https://www.greenpeace.org/indonesia/publikasi/2217/data-terkini-kualitas-udara-kota-kota-di-seluruh-dunia/

Koenker, Roger, et.al. 1994. Quantille Smoothing Splines. Biometrika 81,4, pages 673-680.

Koenker, Roger. Quantile Regression In R: A Vignette. CRAN: http://cran.r-project.org.

Kousa, Anu, et.al. 2002. A model for evaluating the population exposure to ambient air pollution in an urban area. Atmospheric Environment, 13, Pages 2109-2119.

Mulyani, Sri. 2017. Pemodelan Hubungan Indeks Pembangunan Manusia Dan Persentase Penduduk Miskin Menggunakan Regresi Kuantil Smoothing Splines. Tesis: Universitas Padjadjaran.

Rodriguez, Miguel Cardenas. 2016. Air pollution and urban structure linkages: Evidence from European cities. Renewable and Sustainable Energy Reviews, 53, Pages 1-9.

Published
2021-04-29
How to Cite
You Ari Faeni. (2021). Pemodelan Hubungan Kepadatan Penduduk dan Indeks KualitasUdara (IKU) di Indonesia Menggunakan Regresi Kuantil Smoothing Splines. Jurnal Sistem Cerdas, 4(1), 56 - 66. https://doi.org/10.37396/jsc.v4i1.164