Kebijakan Berbasis Data: Analisis dan Prediksi Penyebaran COVID-19 di Jakarta dengan Metode Autoregressive Integrated Moving Average (ARIMA)

  • Hansen Wiguna Divisi Analisa Data, Jakarta Smart City, Jakarta, Indonesia
  • Yudhistira Nugraha Fakultas Ilmu Informatika, Universitas Telkom, Bandung, Indonesia
  • Farizah Rizka R Divisi Analisa Data, Jakarta Smart City, Jakarta, Indonesia
  • Ayu Andika Divisi Analisa Data, Jakarta Smart City, Jakarta, Indonesia
  • Juan Intan Kanggrawan Divisi Analisa Data, Jakarta Smart City, Jakarta, Indonesia
  • Alex Lukmanto Suherman Universitas Telkom
Keywords: ARIMA, COVID-19, DKI Jakarta, Kebijakan Publik, Phyton, Tableau, Analisis Prediktif

Abstract

Data dan informasi merupakan bagian penting dalam pertimbangan mengambil keputusan terkait penanganan COVID-19. Data COVID-19 baik demografi maupun agregat di Provinsi DKI Jakarta diolah dan dianalisis untuk memberikan informasi mengenai situasi dan kondisi terkini terkait pandemi COVID-19 di Provinsi DKI Jakarta. Data COVID-19 tersebut juga dimanfaatkan untuk analisis prediktif untuk mengetahui perkiraan jumlah kasus COVID-19 di masa depan. Analisis prediktif yang digunakan dalam artikel ini adalah metode Autoregressive Integrated Moving Average (ARIMA). Model ARIMA merupakan salah satu metode forecasting hasil dari perluasan model Autoregressive Moving Average (ARMA) untuk data yang tidak
stasioner. Analisis dan visualisasi data dilakukan menggunakan program Python dan Tableau dimana hasil analisis prediktif memperlihatkan tren kasus positif harian yang cenderung naik di kurun waktu 14 hari ke depan dari data yang digunakan. Hasil analisis ini dapat digunakan sebagai pertimbangan bagi pemerintah dalam mengambil kebijakan dan intervensi dalam penanganan COVID-19 di Jakarta, dan untuk masyarakat agar tetap melakukan tindakan preventif dalam mencegah kenaikan kasus, seperti mematuhi protokol kesehatan yang sudah ditetapkan oleh Pemerintah.

Downloads

Download data is not yet available.

References

Zahrotunnimah, “Langkah Taktis Pemerintah dalam Pencegahan Penyebaran Virus Corona Covid-19 di Indonesia,” Jurnal Sosial & Budaya Syar’i, vol. 7, no. 3, pp. 247-260, 2020.

Seto WH, Tsang D, Yung RW, et al. “Effectiveness of Precautions Against Droplets and Contact in Prevention of Nosocomial Transmission of Severe Acute Respiratory Syndrome (SARS),” Lancet, vol. 361, no. 9368, pp. 1519-1520, 2003.

Pemerintah Provinsi DKI Jakarta, “Jakarta Tanggap COVID-19,” Pemerintah Provinsi DKI Jakarta, 2020. [Online]. Available: https://corona.jakarta.go.id/id. [Diakses 8 July 2020].

F. Fadly dan E. Sari, “An Approach to Measure the Death Impact of Covid-19 in Jakarta using Autoregressive Integrated Moving Average (ARIMA),” Unnes Journal of Public Health, vol. 9, no. 2, 2020.

United States Census Bureau, “U.S. Census Bureau Current Population,” 1 July 2020. [Online]. Available: https://www.census.gov/popclock/print.php?component=counter. [Diakses 8 July 2020].

A. Kunaefi, Detik.com, 17 April 2020. [Online]. Available: https://news.detik.com/kolom/d-4980560/pandemi-data-dan-kebijakan-publik. [Diakses 8 July 2020].

J. Studinka dan A. A. Guenduez, “The Use of Big Data in the Public Policy Process: Paving the Way for EvidenceBased Governance,” EGPA Conference 2018, 2018.

G. Ding, X. Li, Y. Shen and J. Fan, "Brief Analysis of The ARIMA Model on The COVID-19 in Italy," medRxiv, 2020.

Q. Yang, J. Wang, H. Ma and X. Wang, "Research on COVID-19 based on ARIMA Model- Taking Hubei, China as an example to see the epidemic in Italy," Elsevier, p. 4, 2020.

R. K. Singh, M. Rani, A. S. Bhagavathula, A. J. R. Morales, H. Kalita, C. Nanda, S. Sharma, Y. D. Sharma, A. A. Rabaan, J. Rahmani and P. Kumar, "Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model," Jorunal of Medical Internet Research (JMIR), vol. 6, no. 2, p. e19115, 2020.

G. Perone, "An ARIMA Model to Forecast the Spread and the Final Size of COVID-2019 Epidemic in Italy," Social Science Research Network (SSRN), 2020.

S. I. Alzahrani, I. A. Aljamaan and E. A. Al-Fakih, "Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions," Journal of Infection and Public Health, vol. 13, pp. 914-919, 2020.

“Data-Driven Innovation Lab,” Singapore University of Technology and Design (SUTD), 11 May 2020. [Online]. Available: https://ddi.sutd.edu.sg/. [Diakses 8 July 2020].

C. W. Churchman, “Wicked Problems,” Management Science, vol. 14, pp. B141-B142, 1967.

S. G. Makridakis, S. C. Wheelwright dan R. J. Hyndman, Forecasting: Methods and Application, 3rd penyunt., New Jersey: John Wiley & Sons, Inc., 1998.

H. Tusyakdiah, Medium, [Online]. Available: https://medium.com/@halima23121998/penerapan-metode-auto-regressive-integrated-moving-average-arima-pada-peramalan-harga-bitcoin-77558605eaf5. [Diakses 8 July 2020].

D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti and M. Ciccozzi, "Application of the ARIMA Model on The COVID-2019 Epidemic Dataset," Elsevier, vol. 29, no. 40, p. 1053, 2020.

L. Bayyurt and B. Bayyurt, "Forecasting of COVID-19 Cases and Deaths Using ARIMA Models," medRxiv, 2020.

Published
2020-08-31
How to Cite
Wiguna, H., Nugraha, Y., Rizka R, F., Andika, A., Kanggrawan, J. I., & Suherman, A. L. (2020). Kebijakan Berbasis Data: Analisis dan Prediksi Penyebaran COVID-19 di Jakarta dengan Metode Autoregressive Integrated Moving Average (ARIMA). Jurnal Sistem Cerdas, 3(2), 74 - 83. https://doi.org/10.37396/jsc.v3i2.76

Most read articles by the same author(s)