Implementation of Naïve Bayes Algorithm to Predict Food Crop Production Results in Garut Regency

  • Vini Oktapiani Institut Teknologi Garut
  • Yoga Handoko Agustin
Keywords: Feature Forward selection, Prediction, SMOTE, Agriculture, Naïve Bayes

Abstract

The ups and downs of food crop production each year are caused by changes in the area of land planted each year. These changes are influenced by several factors, including crop rotation, government policies, changes in agricultural practices, environmental factors such as climate, and economic pressures. In an effort to improve the efficiency and productivity of food crop production in Garut Regency, the use of technology and data analysis methods is becoming increasingly important. This research aims to predict food crop production in Garut Regency with Naïve Bayes algorithm and evaluate influential factors. This modeling is analyzed using Feature Forward selection and SMOTE techniques to determine the most influential attributes and overcome class imbalance. The method used is Cross-Industry Standard Process For Data Mining (CRISP-DM). Where the use of SMOTE successfully handles unbalanced classes, and the application of Feature selection results in the 5 most influential factors, namely crop type, added planting, realized harvest area, realized production and production. The results showed that the Naive Bayes model with Cross validation and Xgboost resulted in an Accuracy value of 82.54%, Recall value of 81.67%, Precision value of 83.34%. And the AUC value is 0.904% with the Good Classification category.

Downloads

Download data is not yet available.

References

A. Satria, R. M. Badri, and I. Safitri, “Prediksi Hasil Panen Tanaman Pangan Sumatera dengan Metode Machine Learning,” Digit. Transform. Technol., vol. 3, no. 2, pp. 389–398, 2023, doi: 10.47709/digitech.v3i2.2852.

M. K. B. Seran, F. Tedy, I. P. A. N. Samane, P. Batarius, P. A. Nani, and A. A. J. Sinlae, “Analisis Data Pertanian Tanaman Pangan untuk Memprediksi Hasil Panen di Kabupaten Malaka Menggunakan Metode Multiple Linear Regression,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 4, no. 1, pp. 209–221, 2024, doi: 10.24002/konstelasi.v4i1.8970.

S. Adiguno, Y. Syahra, and M. Yetri, “Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 4, p. 275, 2022, doi: 10.53513/jursi.v1i4.5331.

M. Kafil, “Penerapan Metode K-Nearest Neighbors Untuk Prediksi Penjualan Berbasis Web Pada Boutiq Dealove Bondowoso,” JATI (Jurnal Mhs. Tek. Inform., vol. 3, no. 2, pp. 59–66, 2019, doi: 10.36040/jati.v3i2.860.

R. C. Wulandari, P. Batarius, and ..., “Prediksi Hasil Pertanian Tanaman Pangan Menggunakan Metode Double Exponential Smoothing,” Proc. …, 2023, [Online]. Available: https://conferences.ittelkom-pwt.ac.id/index.php/centive/article/view/255%0Ahttps://conferences.ittelkom-pwt.ac.id/index.php/centive/article/download/255/174

W. Ananda, M. Safii, and M. Fauzan, “Prediksi Jumlah Hasil Panen Sawit Menggunakan Algoritma Naive Bayes,” TIN Terap. Inform. Nusant. Vol, vol. 1, no. 10, pp. 513–519, 2021.

I. B. K. D. S. Negara, I. P. K. Negara, and N. Y. Arso, “Prediksi Hasil Panen Padi Di Kabupaten Jembrana Menggunakan Metode Naive Bayes Classifier,” J. Teknol. Inf. dan Komput., vol. 9, no. 3, pp. 260–265, 2023.

K. C. Pelangi, “Prediksi Produksi Tanaman Pangan Di Provinsi Gorontalo Menggunakan Metode K-NN (K- Nearest Neighbor),” vol. 6, no. 2, pp. 2–6, 2021.

K. Akbar and M. Hayaty, “Data Balancing untuk Mengatasi Imbalance Dataset pada Prediksi Produksi Padi Balancing Data to Overcome Imbalance Dataset on Rice Production Prediction,” J. Ilm. Intech Inf. Technol. J. UMUS, vol. 2, no. 02, pp. 1–14, 2020.

A. M. A. Rahim, Inggrid Yanuar Risca Pratiwi, and Muhammad Ainul Fikri, “Klasifikasi Penyakit Jantung Menggunakan Metode Synthetic Minority Over-Sampling Technique Dan Random Forest Clasifier,” Indones. J. Comput. Sci., vol. 12, no. 5, pp. 2995–3011, 2023, doi: 10.33022/ijcs.v12i5.3413.

D. Kurniawan and M. Yasir, “Optimization Sentimen Analysis using CRISP-DM and Naive Bayes Methods Implemented on Social Media,” Cybersp. J. Pendidik. Teknol. Inf., vol. 6, no. 2, p. 74, 2022, doi: 10.22373/cj.v6i2.12793.

Y. Suhanda, I. Kurniati, and S. Norma, “Penerapan Metode Crisp-DM Dengan Algoritma K-Means Clustering Untuk Segmentasi Mahasiswa Berdasarkan Kualitas Akademik,” J. Teknol. Inform. dan Komput., vol. 6, no. 2, pp. 12–20, 2020, doi: 10.37012/jtik.v6i2.299.

Y. Christian and K. O. Y. R. Qi, “Penerapan K-Means pada Segmentasi Pasar untuk Riset Pemasaran pada Startup Early Stage dengan Menggunakan CRISP-DM,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 966, 2022, doi: 10.30865/jurikom.v9i4.4486.

A. Hardirega and I. Jaelani, “IMPLEMENTASI CONVOLUTIONAL NEURAL NETWORK ( CNN ) KLASIFIKASI MOTIF BATIK MENGGUNAKAN EFFICIENTNET-B1,” vol. 8, no. 5, pp. 10023–10028, 2024.

M. Rafi Muttaqin, T. Iman Hermanto, M. Agus Sunandar, P. Studi Teknik Informatika, and S. Tinggi Teknologi Wastukancana, “Penerapan K-Means Clustering dan Cross-Industry Standard Process For Data Mining (CRISP-DM) untuk Mengelompokan Penjualan Kue,” Journal.Unpak.Ac.Id, vol. 191. Rafi, no. 1, pp. 38–53, 2022, [Online]. Available: http://journal.unpak.ac.id/index.php/komputasi/article/view/3976

N. C. Sastya and I. Nugraha, “Penerapan Metode CRISP-DM dalam Menganalisis Data untuk Menentukan Customer Behavior di MeatSolution,” Unistek, vol. 10, no. 2, pp. 103–115, 2023, doi: 10.33592/unistek.v10i2.3079.

T. T. Widowati and M. Sadikin, “Analisis Sentimen Twitter terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 626–636, 2021, doi: 10.24176/simet.v11i2.4568.

S. Shedriko and M. Firdaus, “Penentuan Klasifikasi Dengan Crisp-Dm Dalam Memprediksi Kelulusan Mahasiswa Pada Suatu Mata Kuliah,” Semnas Ristek (Seminar Nas. Ris. dan Inov. Teknol., vol. 6, no. 1, pp. 826–831, 2022, doi: 10.30998/semnasristek.v6i1.5814.

Juanda, “Jurnal Mantik Penerapan Naive Bayes Dalam Memprediksi Penjualan Tuan Kentang Palembang,” vol. 6, no. 36, pp. 2502–2507, 2022.

S. Lestari, A. Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerlang,” PROSISKO J. Pengemb. Ris. dan Obs. Sist. Komput., vol. 7, no. 1, pp. 8–16, 2020, doi: 10.30656/prosisko.v7i1.2129.

Published
2024-12-17
How to Cite
Oktapiani, V., & Agustin, Y. H. (2024). Implementation of Naïve Bayes Algorithm to Predict Food Crop Production Results in Garut Regency. Jurnal Sistem Cerdas, 7(3), 366 - 376. https://doi.org/10.37396/jsc.v7i3.455
Section
Articles