Decision Support System for Determining the Location of Public Electric Charging Stations (SPLU) with Machine Learning

  • Sriyono Universitas Muhammadiyah Sidoarjo
  • Fierda Lestari Sarpangga Putri Universitas Muhammadiyah Sidoarjo
  • Hadiah Fitriyah Universitas Muhammadiyah Sidoarjo
Keywords: Electricity, Locations of Public Electric Vehicle Charging Stations, Social Media

Abstract

Electric vehicles are becoming increasingly popular as an environmentally friendly alternative, but the main challenge is the availability of adequate charging infrastructure. This research aims to develop a decision making system for determining the best public electric vehicle charging station (SPLU) locations utilizing machine learning. The purpose of this research is to find out the process of determining the location of Public Electric Charging Stations (SPLU) using a Machine Learning-based decision making system. This research uses quantitative methods with AHP techniques to determine the criteria weights and machine learning to recommend the best SPLU locations based on spatial data, surveys, and social media. The location recommendations are displayed in the form of an interactive digital map with visualizations of the suitability level to facilitate decision making.

Downloads

Download data is not yet available.

References

A. R. Hakim, “Analisis Penentuan Lokasi SPKLU Dalam Mendukung Kebijakan Kendaraan Listrik Bertenaga Baterai Di Wilayah Jawa Timur,” Energy J. Ilm. Ilmu-Ilmu Tek., vol. 13, no. 2, hal. 109–116, Des 2023, doi: 10.51747/energy.v13i2.1633.

W. Anqi, “Economic efficiency of high-performance electric vehicle operation based on neural network algorithm,” Comput. Electr. Eng., vol. 112, hal. 109026, Des 2023, doi: 10.1016/j.compeleceng.2023.109026.

B. P. Adedeji, “Electric vehicles survey and a multifunctional artificial neural network for predicting energy consumption in all-electric vehicles,” Results Eng., vol. 19, hal. 101283, Sep 2023, doi: 10.1016/j.rineng.2023.101283.

N. Amilia, Z. Palinrungi, I. Vanany, dan M. Arief, “Designing an Optimized Electric Vehicle Charging Station Infrastructure for Urban Area: A Case study from Indonesia,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 2022, hal. 2812–2817, doi: 10.1109/ITSC55140.2022.9922278.

H. Prabowo, S. Herjuna, dan R. Palebangan, Manyala App: Sistem Pendukung Keputusan Penentuan Lokasi SPKLU dengan Hassle-Free Machine Learning. 2023.

D. D. Priyantoro dan A. Kurniawan, “Apa Perbedaan SPLU dengan SPKLU buat Kendaraan Listrik?,” KOMPAS.com, 2019. .

M. Berliandaldo dan A. Prasetio, “Analisa dan Tinjauan Hukum atas Kebijakan Pengembangan dan Pemanfaatan Kendaraan Bermotor Listrik pada Sektor Pariwisata Indonesia,” Sanskara Huk. dan HAM, vol. 1, no. 02, hal. 01–12, Des 2022, doi: 10.58812/shh.v1i02.55.

H. Yatriendi, A. M. N. Putra, dan F. A. Muchtari, “Overview: Perkembangan Teknologi Pengisian Cepat Pada Kendaraan Listrik (Teknologi dan Infrastruktur),” Semin. Nas. Ris. Inov. Teknol., vol. 1, no. 1, hal. 128–137, 2022.

H. M. K. Sari, Sriyono, dan N. K. S. N, “Strategi Menarik Kaum Milenial Untuk Investasi Di Sektor Keuangan : Langkah Apa Yang Harus Dilakukan ?,” J. Nusamba, vol. 6, no. 1, 2021, doi: https://doi.org/10.29407/nusamba.v6i1.14365.

M. Nurmuhammed, O. Akdağ, dan T. Karadağ, “A novel modified Archimedes optimization algorithm for optimal placement of electric vehicle charging stations in distribution networks,” Alexandria Eng. J., vol. 84, hal. 81–92, Des 2023, doi: 10.1016/j.aej.2023.10.055.

H. Margono, PEMASARAN STRATEGIK: Membangun Strategi Pemasaran di Era Digital. Jakarta Selatan: PT. Insan Sempurna Mandiri, 2022.

Muttaqin et al., Implementasi Artificial Intelligence (AI) dalam Kehidupan. Langsa: Yayasan Kita Menulis, 2023.

H.-A. I. El-Azab, R. A. Swief, N. H. El-Amary, dan H. K. Temraz, “Seasonal electric vehicle forecasting model based on machine learning and deep learning techniques,” Energy AI, vol. 14, hal. 100285, Okt 2023, doi: 10.1016/j.egyai.2023.100285.

A. Ali, A. Kalatian, dan C. F. Choudhury, “Comparing and contrasting choice model and machine learning techniques in the context of vehicle ownership decisions,” Transp. Res. Part A Policy Pract., vol. 173, hal. 103727, Jul 2023, doi: 10.1016/j.tra.2023.103727.

K. Liu et al., “Characteristic bands extraction method and prediction of soil nutrient contents based on an analytic hierarchy process,” Measurement, vol. 220, hal. 113408, Okt 2023, doi: 10.1016/j.measurement.2023.113408.

R. Tian, S. Yang, C. Wang, Z. Ma, dan C. Kang, “Medicine-Shelf matching strategy based on Bayesian convolutional neural network with fuzzy analytic hierarchy process,” Expert Syst. Appl., vol. 231, hal. 120814, Nov 2023, doi: 10.1016/j.eswa.2023.120814.

P. Ahadi, F. Fakhrabadi, A. Pourshaghaghy, dan F. Kowsary, “Optimal site selection for a solar power plant in Iran via the Analytic Hierarchy Process (AHP),” Renew. Energy, vol. 215, hal. 118944, Okt 2023, doi: 10.1016/j.renene.2023.118944.

A. M. Sugieanto, Penentuan Lokasi Stasiun Pengisian Kendaraan Listrik Umum Yang Optimum Dengan Menggunakan Analisis Spasial. Surabaya: Institut Teknologi Sepuluh Nopember, 2022.

H. I. Shaheen, M. Gapit, S. Gireesan, dan V. Lešić, “Model Predictive Control of Street Lighting based on Spatial Points of Interest,” IFAC-PapersOnLine, vol. 56, no. 2, hal. 9417–9422, 2023, doi: 10.1016/j.ifacol.2023.10.234.

R. Baskara, Implementasi Web Scraping Pada Media Sosial Instagram. Yogyakarta: Universitas Islam Indonesia, 2022.

Published
2024-08-27
How to Cite
Sriyono, Sarpangga Putri, F. L., & Fitriyah, H. (2024). Decision Support System for Determining the Location of Public Electric Charging Stations (SPLU) with Machine Learning. Jurnal Sistem Cerdas, 7(2), 163 - 174. https://doi.org/10.37396/jsc.v7i2.437
Section
Articles