Perbandingan Analisis Sentimen Aplikasi Traveloka dan Tiket.com pada Twitter dengan Metode Support Vector Machine
Abstract
The emergence of the COVID-19 pandemic in Indonesia resulted in an economic crisis, including in the world of tourism, which caused a decline in the national economy. With the existence of Online Travel Agencies (OTA) such as Traveloka and Tiket.com, it is hoped that they can help improve the tourism sector for the Indonesian economy. As a popular OTA and to see the opinion of the Indonesian people, it can be seen from public opinion in the form of tweets on the Twitter application. The tweets data will be taken and sentiment analysis will be carried out on the OTA Traveloka and Tiket.com applications which will be classified into certain classes based on opinions and modeling will be carried out using the Support Vector Machine (SVM) algorithm method. This research aims to determine the level of accuracy of the SVM algorithm and find out how sentiment analysis compares between Traveloka and Tiket.com. In the sentiment analysis comparison, in terms of price, Traveloka is superior and in terms of service, Tiket.com is superior. After modeling by comparing splitting data and handling imbalanced data using Synthetic Minority Oversampling Technique (SMOTE), the best SVM accuracy results for the Tiket.com price dataset were 68%, for Traveloka prices it was 97%, for Tiket.com services it was 92%, and for Traveloka services it is 89%.
Downloads
References
Badan Pusat Statistik Indonesia, Tourism Satellite Account Indonesia 2016-2019. Jakarta: BPS-Statistics Indonesia, 2022.
D. Angelia, “6 Startup Hotel Perjalanan Paling Populer di Indonesia,” DailySocial.id, 2022. https://goodstats.id/article/sering-liburan-intip-6-startup-hotel-dan-perjalanan-terpopuler-di-indonesia-q1-2022-HsAss (accessed Oct. 14, 2022).
S. Kemp, “Digital 2022: Indonesia,” 2022. https://datareportal.com/reports/digital-2022-indonesia
B. Bambang and T. A. Wahyudi, “Analisis pengaruh citra perusahaan dan kualitas layanan terhadap loyalitas pelanggan melalui kepuasan pelanggan,” J. Manaj. Strateg. dan Apl. Bisnis, vol. 2, no. 1, pp. 61–70, 2019, doi: 10.36407/jmsab.v2i1.49.
P. Lin, X. Luo, and Y. Fan, “Sentiment Analysis Based on Deep Learning: A Comparative Study,” Int. J. Comput. Inf. Eng., vol. 14, no. 12, pp. 473–485, 2020.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020, doi: 10.32664/smatika.v10i02.455.
Nwagu, C. Kenneth, Omankwu, O. Chinecherem, and Inyiama, “Knowledge discovery in databases: An overview,” Int. J. Comput. Sci. Inf. Secur., vol. 15, no. 12, pp. 12–16, 2017.
M. R. A. Nasution and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” J. Inform., vol. 6, no. 2, pp. 226–235, 2019, doi: 10.31311/ji.v6i2.5129.
R. A. Raharjo, I. M. G. Sunarya, and D. G. H. Divayana, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Kasus Analisis Sentimen Terhadap Data Vaksin,” J. Ilm. Elektron. dan Komput., vol. 15, no. 2, pp. 456–464, 2022.
M. R. Faisal, D. Kartini, A. R. Arrahimi, and T. Hamonangan, Text Mining Untuk Pemula, 1st ed. Banjarbaru,: Scripta Cendekia, 2021.
F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825--2830, 2011.
Y. Kalmukov, “Using Word Clouds for Fast Identification of Papers’ Subject Domain and Reviewers’ Competences 15,” Proc. Univ. Ruse, vol. 60, pp. 114–119, 2021, [Online]. Available: www.compsystech.org