Convolutional Neural Network Untuk Perbandingan Optimizer Pada Citra Batang Pohon
Abstract
In the surrounding environment, there are various types of trees with different characteristics. One characteristic of a tree that is difficult to distinguish is its trunk. After researchers made observations, the trunks of Pine and Tabebuya trees had the same characteristics, namely cracking. The problem of incorrectly identifying the characteristics of a tree's trunk can be overcome by classification. Deep Learning with the Convolutional Neural Network (CNN) algorithm is a method commonly used in image classification. The stages in this research include image data retrieval, data preprocessing, CNN architecture formation, model training, and model validation. Image retrieval was carried out directly by researchers, then the 1000 best images were selected. The image dataset is then divided into 75% training data and 25% validation data. Testing was carried out by comparing the Stochastic Gradient Descent (SGD) optimizer and the Adaptive Learning Rate Optimization Method (RMSprop) using epochs 10, 15, 20, 30, 50, and 80. The results showed that the SGD optimizer produced the highest accuracy compared to the RMSProp optimizer. The most optimal result when applying the SGD optimizer is 0.9360 with epochs 80, while for the RMSProp optimizer it is 0.9160 with epochs 20.
Downloads
References
H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.
R. S. Tantika, P. Statistika, F. Matematika, and P. Alam, “pada Data Pasien Penyakit Tiroid,” pp. 159–166.
H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “Classification of Vehicle Types Using Backpropagation Neural Networks With Metric and Ecentricity Parameters,” J. Ris. Inform., vol. 4, no. 1, pp. 65–70, 2021, doi: 10.34288/jri.v4i1.293.
J. Díaz-Ramírez, “Machine Learning and Deep Learning,” Ingeniare, vol. 29, no. 2, pp. 182–183, 2021, doi: 10.4067/S0718-33052021000200180.
L. Marifatul Azizah, S. Fadillah Umayah, and F. Fajar, “Deteksi Kecacatan Permukaan Buah Manggis Menggunakan Metode Deep Learning dengan Konvolusi Multilayer,” Semesta Tek., vol. 21, no. 2, pp. 230–236, 2018, doi: 10.18196/st.212229.
M. I. Mardiyah, “Implementasi Deep Learning untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (CNN) Pada Citra Kebun dan Sawah,” Univ. Islam Indones., no. June, 2020, doi: 10.13140/RG.2.2.10880.53768.
M. Farid Naufal et al., “Klasifikasi Citra Game Batu Kertas Gunting Menggunakan Convolutional Neural Network Image Classification of Rock Paper Scissor Game Using Convolutional Neural Network,” Techno.COM, vol. 20, no. 1, pp. 166–174, 2021.
O. D. S. Sunanto and P. H. Utomo, “Implementasi Deep Learning Dengan Convolutional Neural Network Untuk Klasifikasi Gambar Sampah Organik Dan Anorganik,” Pattimura Proceeding Conf. Sci. Technol., vol. 1, no. 2, pp. 335–340, 2022, [Online]. Available: https://jurnal.unej.ac.id/index.php/prosiding/article/view/33527
K. Heryandi Suradiradja, U. Pamulang, J. Raya Puspiptek, K. Pamulang, and K. Tangerang Selatan, “Algoritme Machine Learning Multi-Layer Perceptron dan Recurrent Neural Network untuk Prediksi Harga Cabai Merah Besar di Kota Tangerang,” Fakt. Exacta, vol. 14, no. 4, pp. 1979–276, 2021, doi: 10.30998/faktorexacta.v14i4.10376.
A. J. Rozaqi, A. Sunyoto, and M. rudyanto Arief, “Deteksi Penyakit Pada Daun Kentang Menggunakan Pengolahan Citra dengan Metode Convolutional Neural Network,” Creat. Inf. Technol. J., vol. 8, no. 1, p. 22, 2021, doi: 10.24076/citec.2021v8i1.263.
S. Winiarti, C. Wukir, U. Ahdiani, and T. Ismail, “Klasifikasi Image Untuk Jenis Buku Bacaan Anak-Anak dengan Menggunakan Convolutional Neural Network,” J. Media Inform. Budidarma, vol. 6, no. 2, p. 738, 2022, doi: 10.30865/mib.v6i2.3504.
S. Suluh, “Studi Eksperimen Limbah Buah Pinus Sebagai Sumber Energi Alternatif Ditinjau Dari Variasi Butiran,” J. Dyn. Saint, vol. 3, no. 1, pp. 444–459, 2018, doi: 10.47178/dynamicsaint.v3i1.269.
S. Anindyanari, W. Widjanarko, and B. Widodo, “MANAJEMEN KONTEN INSTAGRAM MILIK PEMERINTAH DALAM PROMOSI POTENSI PARIWISATA DAERAH DI KABUPATEN BANYUMAS PROVINSI JAWA TENGAH : STUDI TENTANG AKUN INSTAGRAM @DINPORABUDPAR_BANYUMAS Wisnu Widjanarko Bambang Widodo,” vol. 17, no. 1, pp. 91–103, 2021, [Online]. Available: https://banyumaskab.bps.go.id/dynamictable/2019/11/22/49/banyaknya-
I. Wulandari, H. Yasin, T. Widiharih, D. Statistika, and U. Diponegoro, “Klasifikasi citra digital bumbu dan rempah dengan algoritma convolutional neural network (cnn) 1,2,3,” vol. 9, pp. 273–282, 2020.
M. P. Véstias, “Convolutional Neural Network,” Encycl. Inf. Sci. Technol. Fifth Ed., vol. 8, no. 4, pp. 12–26, 2020, doi: 10.4018/978-1-7998-3479-3.ch002.
R. Mehindra Prasmatio, B. Rahmat, and I. Yuniar, “Algoritma Convolutional Neural Network,” J. Inform. dan Sist. Inf., vol. 1, no. 2, pp. 510–521, 2020.
L. G. Astuti, P. S. Informatika, and U. Udayana, “Implementasi LSTM pada Analisis Sentimen Review Film Menggunakan Adam dan RMSprop Optimizer,” vol. 10, no. 4, pp. 351–362, 2022.
B. Nugroho, E. Y. Puspaningrum, and M. S. Munir, “Kinerja Algoritma Optimasi Root-Mean-Square Propagation dan Stochastic Gradient Descent pada Klasifikasi Pneumonia Covid-19 Menggunakan CNN,” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 420, 2021, doi: 10.26418/jp.v7i3.49172.
D. Efendi, S. Sanjaya, F. Syafria, and E. Budianita, “Penerapan Algoritma Convolutional Neural Network Arsitektur ResNet-50 untuk Klasifikasi Citra Daging Sapi dan Babi,” J. Ris. Komput., vol. 9, no. 3, pp. 2407–389, 2022, doi: 10.30865/jurikom.v9i3.4176.
N. K. C. PRATIWI, N. IBRAHIM, Y. N. FU’ADAH, and S. RIZAL, “Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 2, p. 306, 2021, doi: 10.26760/elkomika.v9i2.306.