Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana

  • Dede Kurniadi Institut Teknologi Garut
  • Fitri Nuraeni Institut Teknologi Garut
  • Sri Mulyani Lestari Institut Teknologi Garut
Keywords: Prediction, Algorithm, Naive Bayes, Feature Forward Selection, SMOTE

Abstract

The punctuality of students in completing their studies is an important aspect of the study program. Because there are still students who have not been able to complete their studies on time. The purpose of this study is to determine the factors that influence students in completing their studies by extracting student academic data to obtain a classification model that can be used to predict the accuracy of the study period. The classification method for predicting the accuracy of the student's study period uses the Naive Bayes algorithm using the Feature Forward Selection and SMOTE. The method for data processing in this study uses CRISP-DM. The results of this study are in the form of a classification model to predict the accuracy of the study period of students who obtain a fairly high accuracy value of 87.13%, a recall value of 83.82%, and a precision value of 89.76%, and an AUC value of 0.92. included in the category of Excellent Classification. The use of SMOTE has succeeded in handling Imbalanced Class on the data, and the application of Feature Forward Selection resulted in 5 factors that most influence the accuracy of the student's study period, namely the attributes of Gender, School Category, Year of Entry, Study Program and Grade Point Average for the third semester. The prediction model generated using the Naïve Bayes algorithm, Feature Forward Selection, and SMOTE is expected to help study programs to find out earlier the possibility of students completing their studies on time or not on time.

Downloads

Download data is not yet available.

References

E. P. K. Orpa, E. F. Ripanti, and Tursina, “Model Prediksi Awal Masa Studi Mahasiswa Menggunakan Algoritma Decision tree c4.5,” vol. 7, no. 4, pp. 272–278, 2019.

ITG, “Pedoman Akademik Institut Teknologi Garut,” Angew. Chemie Int. Ed. 6(11), 951–952., pp. 10–27, 2021.

M. R. A. Fernanda, P. Sokibi, and R. Fahrudin, “Sistem Prediksi Ketepatan Kelulusan Mahasiswa Berdasarkan Data Akademik Dan Non Akademik Menggunakan Metode K-Means (Studi Kasus : Universitas Catur Insan Cendekia),” J. Digit, vol. 11, no. 1, p. 89, 2021.

S. Yunianita, N. Setiani, and S. Mulyati, “Prediksi Ketepatan Masa Studi Mahasiswa dengan Algoritma Pohon Keputusan C45,” pp. 22–28, 2018.

I. A. Nikmatun and I. Waspada, “Implementasi Data Mining Untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” vol. 10, no. 2, pp. 421–432, 2019.

D. Kurniadi, E. Abdurachman, H. Leslie, H. Spits, and W. Suparta, “Predicting Student Performance With Multi-Level Representation In An Intelligent Academic Recommender System Using Backpropagation Neural Network,” no. August, 2021.

A. Jananto, Sulastri, E. Nur Wahyudi, and Sunardi, “Data Induk Mahasiswa sebagai Prediktor Ketepatan Waktu Lulus Menggunakan Algoritma CART Klasifikasi Data Mining,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 1, pp. 71–78, 2021.

F. Nuraeni, Y. H. Agustin, S. Rahayu, D. Kurniadi, Y. Septiana, and S. M. Lestari, “Student Study Timeline Prediction Model Using Naïve Bayes Based Forward Selection Feature,” 8th Int. Conf. ICT Smart Soc. Digit. Twin Smart Soc. ICISS 2021 - Proceeding, pp. 1–5, 2021.

Y. D. Atma and A. Setyanto, “Perbandingan Algoritma C4.5 dan K-NN Dalam Identifikasi Mahasiswa Berpotensi Drop Out,” vol. 2, no. 2, 2018.

A. N. Kasanah, Muladi, and U. Pujianto, “Penerapan Teknik SMOTE Untuk Mengatasi Imbalance Class Dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN,” vol. 1, no. 10, 2019.

I. G. I. Suwardika, I. G. N. Suariana, I. B. P. Bhiantara, and N. Y. Arso, “Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu Menggunakan Naive Bayes: Studi Kasus Fakultas Ekonomi dan Bisnis Universitas Pendidikan Nasional,” vol. 4, no. 2, 2019.

R. Y. Hayuningtyas, “Penerapan Algoritma Naïve Bayes untuk Rekomendasi Pakaian Wanita,” vol. 6, no. 1, pp. 18–22, 2019.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” vol. 5, no. November 2019, pp. 697–711, 2021.

T. Arifin and S. Syalwah, “Prediksi Keberhasilan Immunotherapy Pada Penyakit Kutil Dengan Menggunakan Algoritma Naïve Bayes,” vol. 2, no. 1, pp. 38–43, 2020.

Published
2022-08-31
How to Cite
Kurniadi, D., Nuraeni, F., & Lestari, S. M. (2022). Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana. Jurnal Sistem Cerdas, 5(2), 63 - 82. https://doi.org/10.37396/jsc.v5i2.215
Section
Articles