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Abstract— Accurate forecasting of rice output is essential for improving regional food security planning, 

particularly in East Java Province, which serves as a major national rice granary. This study develops a Long 

Short-Term Memory (LSTM) model to predict rice production using monthly data on production and 

harvested area from 2018 to 2024. The methodology includes data preprocessing, normalization, sequence 

construction with a sliding window, training of a multivariate LSTM model, and performance evaluation 

using mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error 

(MAPE). Results show that the LSTM model achieves superior predictive accuracy, with an MAE of 

95,030.16, RMSE of 120,229.01, and MAPE of 16.64%, significantly outperforming baseline Moving 

Average and Linear Regression models. While the model effectively captures seasonal production trends, 

some inaccuracies remain during periods of anomalous production values. These findings suggest that the 

LSTM model is effective for projecting rice production and may provide a foundation for early warning 

systems and regional food distribution strategies. Further improvements could be realized by integrating 

climate variables or adopting a hybrid model architecture to enhance predictive precision. 

Keywords— Artificial Intelligence, LSTM, Rice Production Forecasting, Time Series Analysis, East 

Java. 

 

 

I. INTRODUCTION 
Rice production plays a crucial role in maintaining national food security, and East 

Java Province is one of Indonesia’s major rice-producing regions. However, rice 

production exhibits substantial temporal fluctuations driven by harvested area, seasonal 

planting cycles, climate variability, and socio-environmental dynamics [1], [2], [3]. Under 

increasingly uncertain climate conditions, accurate production forecasting is essential to 

support food stock planning, rice distribution, and adaptive agricultural policies. These 

challenges are exacerbated by the non-linear and seasonal characteristics of agricultural 

time-series data. 

Methodologically, traditional statistical approaches such as linear regression and 

ARIMA have been widely applied for agricultural forecasting, yet their ability to capture 

complex seasonal patterns and non-linear dependencies remains limited [4], [5]. 

Advances in artificial intelligence have enabled the adoption of deep learning models, 

particularly Long Short-Term Memory (LSTM) networks, which are capable of learning 
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long-term temporal dependencies and overcoming vanishing gradient issues [6], [7], [8]. 

As a result, LSTM has emerged as a state-of-the-art approach for time-series forecasting 

in various domains, including agriculture . 

Despite these advances, several research gaps remain. First, many existing studies rely 

on annual or aggregated data, whereas rice production is strongly influenced by monthly 

seasonal variability. Second, most studies employ univariate inputs, limiting the model’s 

ability to capture inter-variable dynamics [9], [10], [11], [12]. Third, LSTM-based rice 

production forecasting studies focusing specifically on East Java Province remain scarce, 

despite its distinctive production patterns and strategic importance. This study addresses 

these gaps by applying a multivariate LSTM model using monthly production and 

harvested area data from 2018 to 2024, providing a more detailed and locally adaptive 

forecasting framework [13], [14], [15]. 

Accordingly, this study aims to develop a multivariate LSTM-based model for 

monthly rice production forecasting in East Java Province and evaluate its performance 

using RMSE, MAE, and MAPE metrics [16], [17], [18]. The research seeks to answer: 

(1) how monthly rice production patterns evolved in East Java during 2018–2024; (2) 

how accurately LSTM can forecast rice production; and (3) whether incorporating 

harvested area improves predictive accuracy. The proposed model contributes an AI-

based forecasting approach that supports regional food security planning and enriches the 

literature on deep learning applications for agricultural forecasting at the provincial level. 

 

II. METHOD 
 

 
Figure 1. Research Block Diagram 

A. Research Methodology 

This study employs a quantitative methodology utilizing an experimental design to 

create a prediction model for rice production based on Long Short-Term Memory 

(LSTM) technology [6], [19]. The research strategy is formulated as a multivariate time 

series model encompassing two primary variables: rice production (tons) and harvested 

area (hectares). The LSTM model serves as the principal approach due to its ability to 

analyze long-term temporal trends in monthly data. 

The study phases encompass: (1) dataset acquisition and preparation; (2) data 

preprocessing; (3) sequence data generation via the sliding window method; (4) creation 

of the LSTM model architecture; (5) model training; (6) evaluation of the model utilizing 

error metrics; and (7) validation of prediction results. This approach enables complete 

replication of the study procedure by other researchers. 

B. Data Sources and Data Collection Methods 

The utilized data is secondary, comprising monthly rice production (in tons) and 

monthly harvested area (in hectares) for East Java Province from January 2018 to 

December 2024. The data was sourced from the official website of the Central Statistics 

Agency (BPS) of East Java Province [20], [21]. Utilizing secondary data guarantees that 

the information has undergone administrative validation and is appropriate for scientific 

examination. 
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Data was gathered through a documentation technique, utilizing a CSV file download 

procedure. All data was subsequently amalgamated into a singular table with the 

following column configuration: date/month, production (tons), and harvested area (ha). 

In the event of format incompatibilities, the date format was standardized to YYYY-MM 

to facilitate processing as time series data. 

C. Data Preprocessing 
 

Table 1. Summary of Data Preprocessing and Model Configuration 

Component Description 

Dataset Monthly rice production and harvested area (2018–2024) 

Missing value handling Forward filling and linear interpolation 

Outlier handling Extreme values retained if verified as valid seasonal events 

Normalization Min–Max scaling (0–1) 

Window size 3–6 months (sliding window) 

Train–test split 80% training, 20% testing (time-based split) 

Model Multivariate LSTM 

LSTM units 64 

Dense layer 32 neurons (ReLU) 

Optimizer Adam (learning rate 0.001) 

Loss function Mean Squared Error 

Batch size 16 

Epochs 150 

Software Python, TensorFlow/Keras, NumPy, Pandas 

Data preprocessing was conducted to guarantee the dataset's cleanliness and usability 

for the model [22], [23], [24]. The procedure encompasses: 

1. Verifying the absence of values 

Non-missing values were imputed using the forward filling technique or linear 

interpolation, where the data were sequential. 

2. Identification and Management of Outliers 

Irrational outliers were verified against official sources, whilst legitimate extreme 

values were preserved to uphold the data's integrity. 

3. Outlier Handling 

Extreme values were carefully examined using official statistical records. Valid 

extreme observations corresponding to peak or low seasonal production were retained to 

preserve the inherent variability of agricultural time-series data, while inconsistent or 

erroneous entries were corrected during preprocessing. 

4. Data Standardization 

All variables were normalized via MinMaxScaler within a range of 0–1 to meet the 

neural network's specifications. 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (1) 

𝑋′ : Normalization Result 

𝑋 : Original Value 

𝑋𝑚𝑎𝑥 : Maximum Value 

𝑋𝑚𝑖𝑛 : Minimum Value 

5. Formation of Data Sequences 

The sliding window technique is employed to create the input sequence, utilizing 

window lengths (timesteps) ranging from 3 to 6 months. A window of 3 indicates that 

data from months 1 to 3 is used to forecast month 4. 
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6. Segregation of Training and Test Data 

The data is allocated 80% for training and 20% for testing by a time-based split 

approach, owing to its temporal characteristics.  A time-based split was applied to 

preserve temporal order and prevent information leakage from future observations, 

ensuring methodological rigor and reproducibility for time-series forecasting studies. 

D. Development of the LSTM Model 

The LSTM model architecture in this research is constructed to be reproducible with 

explicit parameters [25]. The model comprises: 

− An input layer with dimensions of timesteps by features (2 features: 

production and harvested area) 

− A Long Short-Term Memory (LSTM) layer comprising 64 units 

− A fully connected layer including 32 neurons with ReLU activation function. 

− A singular output layer (1 neuron) to produce a solitary anticipated value 

The training utilized the Adam optimization algorithm with a learning rate of 0.001, a 

Mean Squared Error (MSE) loss function, a batch size of 16, and 150 epochs. Training 

data was handled in a continuous sequence without randomization to preserve temporal 

order. Early halting may be employed to avert overfitting. 

E. Methods of Data Analysis 

The data analysis was performed in three phases: 

1. Descriptive analysis 

Illustrating production and harvested area trends through monthly graphs to analyze 

seasonal patterns. 

2. Analysis of modeling utilizing LSTM 

Incorporating model training, validation, and the preservation of optimal weights 

through model checkpoints. 

3. Accuracy Assessment 

The evaluation was performed with the subsequent metrics: 

• Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|
𝑛
𝑖=1  (2) 

• Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1   (3) 

• Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1  (4) 

Where: 

𝑛 : Total number of data 

𝑦
𝑖
 : Actual value 

𝑦̂
𝑖
 : Predicted value 

 
Table 2. MAPE Value Analysis [1] 

MAPE Value Description 

< 10% Very Accurate 

10% - 20% Good 

20% - 50% Fair 

> 50% Inaccurate 

An actual versus expected graph is utilized to juxtapose the predicted outcomes with 

the exact values. 

All study procedures are meticulously documented to facilitate replication. The model 

parameters, dataset design, and preparation phases are transparently elucidated. This 

research employs Python software utilizing the TensorFlow/Keras, numpy, and pandas 

libraries, enabling execution on various devices with analogous settings. 
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III. RESULT AND DISCUSSION 
A. Analytical Description of Production and Cultivated Area Data 

 
Figure 2. Monthly Trends in Rice Production in East Java Province (2018–2024) 

 
Figure 3. Trends in Monthly Rice Harvested Area in East Java Province (2018–2024) 

Data regarding rice production and harvested area in East Java Province from 2018 to 

2024 exhibit significant swings in both production volume and harvested area. This 

signifies that the rice production system in this province exhibits distinct yet intricate 

seasonal dynamics. The descriptive data table indicates that the mean monthly production 

was 809,831.97 tons, accompanied by a substantial standard deviation of 529,897.94 tons, 

signifying considerable variability among months. 

 
Table 3. Descriptive Statistics of Rice Production and Harvested Area in East Java Province (2018–2024). 

 Count Mean Std Min 25% 50% 75% Max 

Production  84 809.832 529.898 211.337 471.491 625.716 964.980 2.293.296 

Area  84 142.426 93.800 36.120 77.876 112.506 176.637 397.026 

The production distribution exhibits two significant characteristics: 

1. Peak production is exceptionally high, particularly during the primary harvest 

season (March–April), exceeding 2 million tons. 

2. Minimum production transpires at the year's conclusion and commencement, 

specifically in January and February, when output declines to roughly 211,336 

tons. 

The harvested area exhibits a pattern closely aligned with production, averaging 

142,425.73 hectares, with seasonal fluctuations corresponding to the cropping cycle. The 

coefficient of variation for harvested area is notably large, signifying a diverse 

distribution during the year. 

The correlation heatmap illustrates a correlation value approaching 1.00, signifying an 

almost perfect linear relationship between the two variables. This discovery establishes a 

crucial basis for predictive models: the stronger the connection between input and output 

variables, the higher the model's capacity to utilize that signal to enhance accuracy. 



Hasanur Mohammad Firdausi et al. / Jurnal Sistem Cerdas (2025) Vol 08-No 03  eISSN : 2622-8254 Page : 364 - 374 
 

369 
©Asosiasi Prakarsa Indonesia Cerdas (APIC) 

 
Figure 4. Correlation Heatmap of Rice Production and Harvested Area   

B. Temporal Dynamics of Production and Cultivated Areas 

Monthly trend visualizations indicate consistently stable seasonal patterns across the 

years. Production reaches its zenith in the initial three months and then has a substantial 

fall in the mid to late years. This pattern signifies that the farming system in East Java 

adheres to a traditional planting calendar, leading to repetitive planting seasons. 

The patterns of harvested area demonstrate changes that closely mirror production 

levels. This substantiates the validity of the premise that harvested area is a crucial 

predictor of production and serves as a highly suitable supporting variable in multivariate 

models. 

The consistency of temporal patterns is essential for LSTM models, as they perform 

more effectively when data demonstrates a recurrent seasonal pattern. This elucidates the 

model's attainment of comparatively constant prediction performance in this 

investigation, with an average error of less than 20% in the majority of months. 

C. Performance of the LSTM Model and Comparison with the Baseline 
 

Table 4. Evaluation of LSTM Model Efficacy Relative to Baseline 

Model MAE RMSE MAPE(%) 

LSTM 95.030,16 120.229,01 16,64 

Moving Average 353.682,06 517.770,56 47,09 

Linear Regression 301.488,46 367.565,21 52,36 

The test findings indicate that the LSTM model substantially surpasses both 

baselines—Moving Average and Linear Regression—across all evaluation criteria (MAE, 

RMSE, MAPE). 

Performance of LSTM: 

− MAE = 95.030,16 

− RMSE = 120.229,01 

− MAPE = 16,64% 

A MAPE value under 20% signifies that the model is classified inside the good 

forecasting accuracy category, as delineated in Table 1 about MAPE value analysis. 

Initial Performance: 

− Moving Average: MAPE 47,09% 

− Linear Regression: MAPE 52,36% 

The Moving Average sometimes fails to reflect the dynamics of swift shifts, 

particularly during the transition from low to high output levels. Linear Regression, as a 
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linear model, can solely represent straightforward linear correlations and fails to account 

for intricate seasonal variations. 

The benefits of LSTM stem from various factors: 

1. The capacity to capture long-term dependencies across months. 

2. Managing non-linear patterns with a gating mechanism (input, forget, output). 

3. The interplay of production variables and cultivated area enhances the 

temporal context acquired by the model. 

Consequently, the application of LSTM has demonstrated a superior predictive 

representation compared to conventional approaches. 

D. Assessment of Predictive Errors and Behavioral Patterns 

 
Figure 5. Comparison of Actual and Forecasted Rice Production Values (Test Set) 

The graph comparing anticipated and real values indicates that the LSTM model 

effectively tracked production trends, particularly during peak periods like March to April 

2024.  During these months, despite significant production fluctuations, the model 

consistently predicted numbers within a range closely aligned with the actual figures. 

 
Table 5. LSTM Model Prediction Outcomes throughout the Testing Phase (Actual versus Predicted) 

date 

Actual 

Production 

(ton) 

Predicted 

Production 

(ton) 

Error 

(ton) 

Error 

(%) 

MA 

Pred 

Lr  

Pred 

2023-08-01 743.342,68 547.234,69 196.107,98 26,38 830.357,22 897.030,94 

2023-09-01 528.980,73 552.859,52 -23.878,79 -4,51 869.215,46 617.353,62 

2023-10-01 428.914,00 466.292,11 -37.378,11 -8,71 732.183,97 731.536,90 

2023-11-01 485.115,13 458.659,54 26.455,58 5,45 567.079,13 481.935,31 

2023-12-01 438.705,74 479.594,41 -40.888,66 -9,32 481.003,28 835.811,00 

2024-01-01 277.035,02 510.528,08 -233.493,06 -84,28 450.911,62 670.773,70 

2024-02-01 310.234,48 407.129,68 -96.895,20 -31,23 400.285,29 635.995,52 

2024-03-01 1.321.465,79 1.166.963,49 154.502,29 11,69 341.991,74 801.456,50 

2024-04-01 2.135.744,25 2.319.570,42 -183.826,17 -8,60 636.245,09 1.306.781,44 

2024-05-01 865.264,09 913.526,38 -48.262,29 -5,57 1.255.814,84 1.267.644,71 

2024-06-01 649.671,78 671.877,12 -22.205,34 -3,41 1.440.824,71 179.179,48 

2024-07-01 889.962,44 1.081.881,61 -191.919,16 -21,56 1.216.893,37 1.241.430,81 

2024-08-01 866.020,53 723.196,13 142.824,39 16,49 801.632,77 851.094,16 

2024-09-01 652.260,74 546.299,05 105.961,68 16,24 801.884,91 768.400,52 

2024-10-01 471.937,28 482.917,47 -10.980,19 -2,32 802.747,90 726.243,29 

2024-11-01 462.469,22 462.358,04 111,17 0,02 663.406,18 418.825,75 

2024-12-01 368.369,67 468.192,29 -99.822,62 -27,09 528.889,08 826.875,70 

Higher prediction errors were observed during extreme production months, 

particularly during unusually low or peak harvest periods. This behavior indicates that 
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while LSTM effectively captures dominant seasonal trends, abrupt deviations remain 

challenging due to limited representation of extreme events in training data. Nevertheless, 

the model performs consistently during normal seasonal cycles, supporting its 

applicability for regional production planning and early warning purposes. 

 

1. Precise Interval 

Months like November 2024, October 2024, and May 2024 exhibited errors below 

5%, signifying exceptionally precise predictions.  The elevated precision during these 

moderate months suggests that the model exhibits optimal stability when production 

values are near the mean and do not encounter significant anomalies. 

2. Period of Underprediction/Overprediction 

The most significant miscalculation transpired in January–February 2024.  During 

these months, actual production was very low, although the model overestimated it.  This 

phenomenon is prevalent due to: 

• the model's increased exposure to high-yielding patterns during training, 

• the minority presence of low extreme values within the distribution, 

• the potential suboptimality of the window size during extreme periods. 

Nonetheless, despite the occurrence of outlier errors, the model exhibits commendable 

predictive stability overall. 

E. Instruction and Assessment Analysis of Curves 

 
Figure 6. Curves of Training Loss and Validation Loss for the LSTM Model 

The loss curve illustrates a consistent decline in training loss, accompanied by a more 

pronounced reduction in validation loss: 

1. This signifies that the model does not exhibit overfitting. 

2. The model acquires generalizable patterns. 

3. Early Stopping effectively concludes training at the right juncture. 

4. The 64-unit LSTM combined with a 32-unit Dense layer is adequately 

representational, obviating the necessity for a more complex architecture. 

This stability is essential as it signifies that the dataset possesses high temporal quality 

for the model's learning process. 

F. Analysis of Possible Seasonal Errors 

According to the Prediction Results table: 

− Positive errors (underpredictions) are more prevalent following the peak 

harvest period. 

− Negative mistakes (overpredictions) are more prevalent during intervals of 

diminished production. 

This phenomenon can be elucidated by the model's behavior: 
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LSTMs more readily learn ascending trends than steeply descending ones, particularly 

when the data distribution is biased towards elevated values. 

The ramifications indicate that additional research ought to contemplate: 

− Including climatic factors (precipitation, temperature), 

− Including land fertility metrics (NDVI/EVI), 

− Using an extended timeframe (6–12 months), 

− or hybrid architectures like CNN-LSTM. 

This study corroborates earlier findings that LSTM is efficacious in agricultural 

forecasting.  Nonetheless, the particular contributions of this work are: 

− Using high-resolution monthly data (84 data points) for East Java, instead 

of annual data. 

− Using a multivariate method to enable the model to comprehend the 

relationships between production and harvested area. 

− Establishing a model baseline to objectively assess LSTM performance. 

− Examining errors in relation to seasonal dynamics, a unique yet pertinent 

method in agricultural forecasting. 

This study's findings demonstrate that LSTM is the preeminent model for forecasting 

monthly rice production in East Java.  This model, characterized by a low error rate and 

reliable performance, presents substantial prospects for: 

− Regional rice inventory management, 

− Logistical planning for food distribution, 

− Prompt identification of possible production reductions, 

− Enhancing early warning systems for food security. 

This model can serve as the basis for creating an agricultural production monitoring 

dashboard that incorporates real-time data in the future. 

 

IV. CONCLUSION 
This study illustrates that the Long Short-Term Memory (LSTM) model can deliver 

enhanced forecast accuracy for monthly rice production in East Java Province by 

employing production and harvested area data from 2018 to 2024.  The evaluation 

findings indicate an MAE of 95,030.16, an RMSE of 120,229.01, and a MAPE of 

16.64%, all of which surpass the performance of the baseline Moving Average and Linear 

Regression approaches.  The model effectively identifies seasonal trends and a robust 

correlation between production and harvested area, although it encounters constraints in 

forecasting extreme values during instances of very low production.  A consistent training 

process devoid of overfitting signals a strong model generalization capability.  These 

findings validate that multivariate LSTM is an effective and viable method for forecasting 

rice production, with potential for enhancement through the incorporation of climate 

factors or the use of more sophisticated model architectures to increase accuracy in the 

future. 
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