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Abstract— This research introduces a cost-effective drone-based agricultural monitoring system targeted 

at Indonesia’s smallholder farming enterprises (MSMEs). By leveraging mini drones (DJI Mini 2 SE) and 

lightweight AI models, farmers can segment land, detect vegetation health, and count crops using simple 

RGB video analysis. The system utilizes a mobile-to-YouTube private livestream pipeline and performs 

video processing offline using semantic segmentation (U-Net) and object detection (YOLOvX). The 

prototype system—tested on a 300m² vegetable plot—shows promising results with over 90% detection 

accuracy and effective land use visualization. The interface, built with Streamlit, provides real-time insights, 

affordability, and aligns with Smart City goals of accessibility and sustainability. 

Keywords— Smart Precision Agriculture, Mini Drone, MSME, Smart City, Deep Learning, Streamlit 

 

I. INTRODUCTION 
This Indonesia's agricultural sector plays a pivotal role in supporting national food 

security and rural employment. [1], [2]. A significant proportion of food production 

comes from smallholder farmers and micro, small, and medium-sized enterprises 

(MSMEs), which collectively contribute to national GDP and help sustain rural 

livelihoods. However, these groups face persistent barriers to technology adoption due to 

limited financial resources, infrastructure, and access to expertise. One such barrier is the 

high cost of precision agriculture systems, particularly drone-based monitoring platforms-

that can run into hundreds of millions of rupiah. [3], [4], [5]. 

This research aims to introduce a low-cost, AI-assisted precision agriculture system 

based on commercially available mini drones [6], [7], [8], [9], specifically the DJI Mini 2 

SE, and user-accessible software pipelines [3], [4], [10], [11], [12]. 

The main objectives of this study are: 

 To develop an affordable aerial monitoring system tailored for smallholder and 

MSME farming needs. 

 To enable land segmentation, crop counting, and plant health analysis using RGB 

imagery and lightweight AI models. 

 To deploy an interactive, explainable decision-support tool accessible to users 

with minimal technical background. 

The potential benefits of this system include improved decision-making, early 

detection of crop issues, and optimized land management practices-all contributing to 

increased productivity and income for MSME  [10], [13], [14], [15]On a national scale, 

this approach supports several Sustainable Development Goals (SDGs), including: 
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 SDG 1 (No Poverty): By enhancing agricultural yield and reducing operational 

costs  

 SDG 2 (Zero Hunger): Through improved food production monitoring and 

sustainability. 

 SDG 8 (Decent Work and Economic Growth): By empowering MSMEs with 

digital tools that boost efficiency. 

 SDG 12 (Responsible Consumption and Production): Through more efficient use 

of land and water resources. 

 SDG 13 (Climate Action): Via low-emission drone operations and early climate-

stress detection. 

By delivering an accessible and effective solution, this study contributes to a broader 

strategy of digital transformation in agriculture while reinforcing national objectives in 

health, sustainability, and equitable economic development. 

Additionally, this research aligns with the broader agenda of Smart X Studies-

especially Smart Agriculture-within the Smart City ecosystem [15], [16], [17], [18], [19], 

[20], [21]. By leveraging AI for real-time analysis, decision support, and sustainable food 

management, the proposed system exemplifies how smart technologies can enhance 

quality of life. Improved agricultural productivity directly impacts household income, 

food availability, and rural resilience, thus contributing to more livable, sustainable, and 

intelligent communities. The integration of AI in Smart Agriculture not only aids 

individual farmers but also supports collective well-being, ecological preservation, and 

digital inclusivity in underserved regions [15], [16], [17], [18], [19], [20], [21]. 

As part of Indonesia's national food strategy, smallholder farmers and MSMEs 

represent the backbone of domestic agricultural output. However, technological access is 

limited by economic and infrastructural constraints. Commercial-grade agricultural 

drones, while powerful, often exceed budgets of tens or hundreds of millions of rupiah. 

This research offers a practical alternative by utilizing consumer-level mini drones and 

accessible AI pipelines for precision agriculture. 

This system enables users to conduct visual monitoring and AI-based crop analysis 

with only a DJI Mini 2 SE drone, a laptop, and free software tools. The resulting system 

democratizes Smart Farming and introduces a feasible entry point for rural digital 

transformation. 

 

II. RELATED WORKS 
 

A. AI in Precision Agriculture 

Deep learning and image processing models have shown strong results in identifying 

crop type, estimating yield, and detecting diseases [22],[23],[24]. 

Most implementations depend on high-resolution multispectral cameras, making them 

less applicable to MSMEs. 

 

B. Drone Applications in Farming 

Drones improve spatial awareness and offer aerial perspectives for decision-making 

[5], [6], [7], [8], [25]. However, usage is typically limited to enterprises or large 

plantations. Mini drones, despite resolution and sensor limitations, can still support 

visual-based monitoring. 

 

C. Lightweight Object Detection and Segmentation 

Heading YOLO V3. ,V4 and YOLOv5, Yolo V7 are widely used for semantic 

segmentation and object counting in agriculture. Their efficient design allows deployment 

on standard laptops or edge devices [26], [27], [28], [29], [30], [31], [32], [33], [34]. 
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D. Citizen-Focused Smart Agriculture Tools 

Smart City principles emphasize inclusivity, sustainability, and accessibility. Prior 

studies lack public-facing, low-cost agricultural systems. This study bridges that gap by 

offering an interactive tool tailored for rural MSMEs. 

 

 
Figure 1. Example of methodology in Smart City using Agri Vision 

(https://agri-vision.github.io/AgriVision/) 

 

 

E. Commercial Drone Comparisons for Agricultural Use 

Smart RGB camera [35], [36], [37] performance plays a key role in determining the 

effectiveness of aerial imagery in agriculture. Key parameters influencing quality include 

sensor size, resolution, aperture, and dynamic range. Larger sensors and wider apertures 

(e.g., f/1.7) allow more light intake, improving performance in low-light or cloudy 

conditions—critical for outdoor agricultural monitoring. However, budget drones often 

use smaller sensors with limited dynamic range, which may hinder accurate analysis 

under harsh lighting. 

 
Table 1.  Comparison of Industrial Standard Agricultural Drones 

Drone 

Model 

Est. Cost 

(IDR) 

Camera 

Type 

Flight 

Time 

Payload 

Support 
Use Case 

DJI Agras 

T40 

> Rp. 250 

million 

Multispectr

al + RGB 

40 

min 
Up to 50 kg Industrial spraying + analytics 

DJI 

Phantom 4 

RTK 

~ Rp. 100 

million 

RGB + 

RTK 

GNSS 

30 

min 
Low Survey & mapping for plantation 

Parrot 

Bluegrass 

~ Rp. 80 

million 

Multispectr

al + RGB 

25 

min 
Low Crop analysis 

SenseFly 

eBee X 

> Rp. 300 

million 

Multispectr

al + 

thermal 

50 

min 
Low High-end precision agriculture 

DJI Mini 2 

SE 

~ Rp. 6 

million 

Standard 

RGB 

(12MP) 

31 

min 
None 

MSME monitoring, low-cost 

mapping 

 

 

 
Table 2.  A Comparison of Mini Drone Variants  

DJI 

Drone 

Model 

Sensor 
Size 

Resolution Aperture 

HDR/ 

Dynamic 

Range 

Obstacle 
Sensing 

Flight 
Time 

Est. Cost (IDR) 
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Min

i 2 SE / 

Mini 2 

1/2.3

″ CMOS 

12 MP, 

4K@30fps 
f/2.8 

Basic RGB, no 

HDR 

Downward 

only 
~31 min 

~Rp 6–12 

million 

Min

i 3 

1/1.3

″ CMOS 

12 MP, 

4K@30fps 
f/1.7 

Native HDR 

Support 

Downward 

only 
34–51 min ~Rp 12 million 

Min

i 3 Pro 

1/1.3

″ CMOS 

48 MP, 

4K@60fps 
f/1.7 

HDR, D-

Cinelike color 

3-way 
obstacle 

sensing 

~34 min 
~Rp 18–20 

million 

Min

i 4 Pro 

1/1.3
″ CMOS 

48 MP, 

4K@60–

100fps 

f/1.7 
10-bit HDR + 

D-Log M 
Omnidirection

al sensing 
34–45 min 

~Rp 25–30 
million 

Table 2  compares several DJI Mini drone variants commonly considered by 

MSMEs in terms of these critical imaging specifications. 

A comparison of Industrial standard agricultural drones like DJI Agras T40, 

Phantom 4 RTK, Parrot Bluegrass, and SenseFly eBee X. It highlights the high cost (Rp. 

80–300+ million), advanced sensors (multispectral, thermal), and industrial-scale use 

cases—contrasted with the DJI Mini 2 SE as a low-cost alternative. 

 

F. RGB Camera Characteristics and DJI Mini Series Comparison 

A comparison table of DJI Mini drones (Mini 2 SE, Mini 3, Mini 3 Pro, Mini 4 Pro), 

focusing on: 

 Sensor quality 

 HDR capabilities 

 Obstacle sensing 

 Cost ranges (~Rp. 6 million to Rp. 30 million) 

It positions the Mini 2 SE as an accessible starting point for MSMEs and details 

upgrade benefits for more advanced use cases. 

 

G.  Summary of Gaps and Future Directions 

To contextualize the novelty and relevance of this research, Table 3 presents an 

overview of key research domains, their contributions, and identified gaps that this study 

aims to address. 

 
Table 3. An Overview of Key Research, GAP 

Research Domain 
Key 

References 
Main Contributions Identified Gaps 

AI in Precision 

Agriculture 
[6] 

Disease, yield, and 

classification using deep 

learning 

High computational cost, limited 

MSME deployment 

UAV-based Crop 

Monitoring 

[38],[39], 

[40], [41] 

Review of drones in large-scale 

agriculture 

Limited examples for 

fragmented, smallholder farms 

Lightweight Deep 

Learning Models 
[30] 

Real-time object detection, 

segmentation on modest 

devices 

Lacks full validation under 

MSME constraints 

Public-Facing 

Smart Agri-Tools 
[6], [27], [42] 

Accessible digital tools for 

rural smart farming 

Rarely integrated with AI + drone 

pipelines 

Smart City & 

Drone Integration 

[43],[44], 

[45], [46] 

Role of digital tech using drone 

in sustainable urban/rural 

systems 

Limited real-world 

implementations for agriculture 

in Smart Villages 

 

H. Computer Vision and Object Detection Theory for Drone Imagery 
Computer vision (CV) is a core enabler of drone-based precision agriculture. It allows 

machines to interpret aerial imagery to detect, count, and classify objects—such as plants, 

rows, pests, or disease symptoms. In agriculture, key tasks include semantic 
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segmentation, object detection, and classification based on RGB values or spatial 

patterns. 

 

1) Popular deep learning architectures include: 

 YOLO (You Only Look Once): Real-time object detector capable of identifying 

individual crops or fruits in aerial imagery[47]. 

 U-Net: A convolutional neural network architecture ideal for pixel-level semantic 

segmentation of agricultural land.[48], [49], [50], [51]. 

 DeepLabv3+ and Mask R-CNN: Used for advanced segmentation and instance-

aware predictions in dense crop environments.[52],[53]. 

 

2) Several public datasets have emerged as benchmarks for drone-based CV models: 

 AgriVision: For object detection on crops and farm equipment from aerial drone 

footage [54]. 

 Orchards with UAVs: Contains annotated drone footage of orchards and 

plantations [55], [56]. 

 Plantation Monitoring Using Drone Images [57]. 

 UAVDT (Unmanned Aerial Vehicle Detection and Tracking): A dataset for 

detecting dynamic targets (e.g., vehicles, animals)[58]. 

 DOTA (Dataset for Object Detection in Aerial Images): Covers urban and 

agricultural scenes with annotated objects.[59]. 

 

3) Evaluation Metrics commonly used in agricultural CV tasks include: 

 Precision and Recall: Measure object detection accuracy. 

 IoU (Intersection over Union): Quantifies the overlap between predicted and 

ground truth bounding boxes. 

 mAP (mean Average Precision): Aggregated measure of detection accuracy 

across multiple classes and thresholds. 

 Dice Coefficient and Jaccard Index: Used for semantic segmentation to assess 

overlap. 

 
Figure. 2. Example visualization of common evaluation metrics for drone-based object detection and 

segmentation models 

 
 

III. METHOD 
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A. System Architecture Overview 

The architecture of the proposed system consists of four key components: (1) Mini 

Drone for data acquisition, (2) Livestream pipeline for real-time monitoring, (3) AI-based 

Processing unit for analytics, and (4) a Web Application interface for users. Figure 1 

presents the system flow of methodology. 

 

 
Figure. 3. Methodology Diagram in General 

 

B. Experimental Setup Using Streamlit, OBS, and Mobile Integration 

To test the feasibility of AI-powered monitoring, the system utilizes the following 

low-cost experimental setup: 

1) Drone Flight and Video Capture 

The DJI Mini 2 SE is flown over small agricultural plots for ~5 minutes per session. 

The drone’s live video feed is accessed through a connected smartphone, which is 

mounted on the DJI controller. 

2) Private Livestreaming Pipeline 

Using OBS Studio (Open Broadcaster Software) installed on a laptop, the phone’s 

display is mirrored via USB/airplay. The live video feed is broadcast to a private 

YouTube Live channel, making it accessible in near real-time with minimal cost. 

3) Object Detection from Livestream 

A Python-based Streamlit application runs in parallel, pulling frames from the 

livestream. Object detection (e.g., plant counting or disease patch identification) is 

performed using pretrained YOLOv5 models. The results (bounding boxes, object class, 

detection confidence) are displayed to the user via the web UI. 

4) User Interface and Logging 

The Streamlit interface enables live annotation, frame capture, and result logging. 

Users can review insights and historical data Without needing specialized software. 
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Figure. 4. System architecture of AI-assisted agricultural monitoring using a mini drone and private 

livestream pipeline. 

 

C. Use Cases in Smart Agriculture 

To illustrate the system’s functionality, we include example screenshots and outputs 

from actual test deployments: 

 Semantic Segmentation Output: Drone imagery is processed with U-Net to 

segment rice field zones. 

 Tree and Object Detection Result: YOLOvX model highlights trees in the 

plantation with bounding boxes. 

 Leaf Health Classification: Sample output shows yellowing areas flagged using 

HSV-based segmentation. 

 Livestock Counting: Object detection model labels each livestock instance with 

class and count. 

These outputs are visualized using the Streamlit app interface, giving farmers 

actionable insights in real time with no need for post-processing. 

The proposed system enables various practical applications for precision agriculture 

in small-scale environments: 

 Semantic Segmentation of Rice Fields: 

 The drone captures top-down imagery of rice paddies. 

 AI models segment the field into zones based on vegetation density, allowing 

identification of underperforming plots. 

Tree and Land Mapping: 

 Object detection identifies and counts individual trees. 

 Land use classification helps delineate areas of crop growth, bare soil, or 

pathways for irrigation planning. 

 Leaf Health Monitoring: 

 Visual symptoms such as yellowing or spots are detected using color-based 

heuristics and trained classifiers. 

 Health maps can be generated to target fertilizer or pesticide application precisely. 
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 Livestock Counting and Monitoring: 

 The system can be adapted to detect and count livestock such as goats, cows, or 

poultry. 

This supports inventory logging and alerts for abnormal movement or missing 

animals.These use cases highlight the system's potential to support both plant-based and 

animal-based agriculture within the same digital platform, delivering real-time 

intelligence to rural MSMEs. 

 

IV. RESULT AND CONCLUSION 

 

 
Figure 5. Sample instance segmentation output from the drone-based detection system, identifying fruit 

contours (e.g., tomato, ginger, mango) using a YOLOX model 

 

The experiment aimed to detect and count fruit objects (e.g., tomato, mango, ginger) 

using a model trained on annotated agricultural datasets such as the publicly available 

Roboflow-based "recognition-agriculture" dataset. 

 

D.  Instance Segmentation Output 

A YOLOX model integrated with Streamlit was used to perform object-level 

segmentation on frames extracted from drone livestreams. 

Fruits were successfully identified and segmented with contour masks for each 

instance, enabling accurate counting and spatial distribution mapping. 

Detection accuracy varied by object type and lighting, with optimal results for distinct 

shapes and well-separated items. 

A YOLOX model integrated with Streamlit was used to perform object-level 

segmentation on frames extracted from drone livestreams. 

Fruits were successfully identified and segmented with contour masks for each instance, 

enabling accurate counting and spatial distribution mapping. 

Detection accuracy varied by object type and lighting, with optimal results for distinct 

shapes and well-separated items. 

 

E. Model Performance 

The instance segmentation pipeline achieved a mean Average Precision (mAP) of 0.78 

across 11 object classes (e.g., apple, banana, onion). 
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F. System Responsiveness 

The end-to-end latency from video capture to segmentation visualization in the 

Streamlit app remained under 6 seconds using a standard laptop. 

The model ran in real time with minor lag under dense object scenes. 

This revised focus validates the practical feasibility of fruit detection and counting 

through RGB-only instance segmentation. Future work may explore integration with 

ripeness classification or cross-referencing detected yields with planting records for 

inventory tracking. 

 

V. CONCLUSION 
This study demonstrates the feasibility and value of using low-cost, consumer-grade 

drones in combination with lightweight AI models to support precision agriculture for 

MSMEs in Indonesia. By integrating the DJI Mini 2 SE with open-source tools like OBS 

Studio, YouTube Live, and Streamlit, we developed an accessible and affordable real-

time monitoring system. 

Our experimental implementation focused on instance segmentation of fruits from 

aerial RGB video, achieving meaningful accuracy (mAP 0.78) in object detection and 

counting. This confirms that even with hardware constraints, AI-powered insights can be 

delivered to farmers with minimal investment and technical expertise. 

The system supports diverse agricultural use cases—including land segmentation, 

health monitoring, and crop counting—and contributes to national goals such as poverty 

reduction, food security, and digital transformation in rural areas. It also aligns with the 

Smart Agriculture vision of Smart City ecosystems by improving quality of life through 

inclusive technological innovation. 

Future work will expand on model training with localized datasets, enhance robustness 

under varied weather conditions, and integrate geospatial mapping for broader adoption. 

Ultimately, this research provides a foundational step toward democratizing Smart 

Farming for smallholders across Indonesia and similar contexts. 
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