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Abstract—Adversarial attacks threaten the reliability of deep learning models in image classification, 

requiring effective defense mechanisms. This study evaluates how defense distillation and adversarial training 

protect ResNet18 models trained on CIFAR-10 data against Fast Gradient Sign Method (FGSM) attacks. The 

baseline model achieves 85.01% accuracy on clean data but its accuracy falls to 19.23% when FGSM attacks 

at epsilon 0.3. The accuracy of defense distillation drops to 23.68% when epsilon reaches 0.3 but adversarial 

training maintains 0.34% accuracy at epsilon 0.25 although it reduces clean data accuracy to 57.08%.  The 

analysis shows that classes with similar visual characteristics such as cats and dogs remain vulnerable to 

attacks. The study demonstrates the requirement for balanced defense approaches while indicating additional 

work needs to improve model robustness. 

Keywords—deep learning, ResNet, adversarial attack, FGSM, CIFAR-10. 

 

I. INTRODUCTION 
Computer Vision operates as a fundamental field of informatics which depends 

primarily on image classification. The application range includes medical image disease 

detection and autonomous vehicle traffic sign recognition and e-commerce product 

labeling and facial recognition systems. The deep learning method of Convolutional 

Neural Networks (CNNs) serves as a primary technology for image classification because 

it delivers high accuracy results. The standard architectural design for Computer Vision 

tasks involves CNNs which extract hierarchical features from images using convolutional 

filters to recognize complex visual patterns [1]. 

Deep learning models which specialize in image classification face risks of attacks. 

Residual Network (ResNet) represents a CNN architecture advancement through its use 

of residual blocks to combat the deep network vanishing gradient issue [2]. Unlike human 

perception, ResNet relies on pixel patterns for recognition. The modification of tiny pixel 

values within an image leads to substantial changes in classification results. These models 

face vulnerability to adversarial attacks which modify image inputs to make the 

classification system produce wrong results [3]. Social and economic impacts emerge 

from these classification errors. The incorrect predictions in finance result in major 

financial losses that affect banking system fraud detection operations. Autonomous 

vehicle traffic sign recognition system failures pose dangers to passengers and public 

safety during operation. Medical error diagnoses result in receiving inappropriate 

treatments. Failures of AI technology reduce public trust in artificial intelligence systems 

which obstructs its future development. 
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Several studies have investigated adversarial attack methods [3], [4], [5]. The Fast 

Gradient Sign Method (FGSM) functions as a widely recognized attack benchmark to 

measure model robustness through its simple yet efficient approach [6]. The FGSM 

enables researchers to test different attack intensities by modifying the epsilon parameter. 

The attack method shows success in discovering weaknesses of deep learning models 

including ResNet models when applied to CIFAR-10 dataset [3]. Research on defense 

mechanisms benefits from FGSM because its simple allows researchers to evaluate 

defenses without the complexities of advanced attack methods such as Projected Gradient 

Descent (PGD) and Carlini-Wagner (CW). 

There are multiple studies about defense mechanisms to improve neural network 

robustness to attacks [7], [8], [9]. The training of models with adversarial examples on the 

dataset creates a robust model that resists attacks while maintaining generalization 

capabilities. The implementation of this method requires substantial resources because it 

needs the creation and training of adversarial datasets [10]. Several preprocessing 

techniques fight against adversarial effects although they diminish model accuracy so 

researchers need to strike a balance between robustness and accuracy loss [11]. 

Researchers attempt to strengthen neural networks by applying defensive distillation as 

one of their methods to enhance resilience [12]. The implemented defensive measures do 

not provide complete protection against certain adversarial attacks [13]. 

Despite existing research on adversarial attacks and defenses, a gap remains in 

understanding the effectiveness of specific defense strategies on particular architectures 

and datasets. For instance, adversarial training on CIFAR-10 with ResNet18 or its 

comparison to defense distillation. Few studies have systematically compared the 

effectiveness of defense distillation and adversarial training on ResNet18 using CIFAR-

10. This research aims to address this gap by providing a comprehensive evaluation and 

direct comparison of both defense methods within a consistent framework. 

The study presents a detailed comparison between defense distillation and adversarial 

training as defensive techniques against FGSM attacks when implemented on ResNet18 

models trained on CIFAR-10 data. The study provides an in-depth assessment through 

cluster analysis to detect misclassification patterns which represents an innovative 

approach in adversarial defense studies. This study provides new insights into the trade-

offs between robustness and accuracy through performance testing and error pattern 

evaluation which leads to suggestions for developing future defense strategies. 

 

II. METHODOLOGY 
A. Research Methodology 

The study evaluated multiple defense mechanisms including Fast Gradient Sign 

Method (FGSM) to evaluate their impact on ResNet deep learning models which trained 

on the CIFAR-10 dataset. The methodology process is illustrated in Figure 1. 
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Figure 1. Research Methodology 

 

B. Algorithms Used 

The study developing and evaluating three models which including a baseline model 

alongside defense distillation and adversarial training models. 

1) Baseline Model 

The baseline model use ResNet18 as its Residual Network architecture variant [2]. 

ResNet18 was chosen because ideal balance between complexity and performance for 

experiments that work with CIFAR-10 and other similar datasets. 

The modification of the initial convolutional layer for CIFAR-10 images included 

using a 3x3 kernel with stride 1 and padding 1 followed by batch normalization to 

accommodate the small input dimensions (32x32 pixels). This modification ensures better 

detection of small but significant patterns. 

The model consists of four layers that include two residual blocks in each of them. 

The initial convolution operation in each layer performs stride 2 to decrease feature 

dimensions. This technique both preserves vital information and reduces computational 

complexity effectively. The last layer includes average pooling which connects to a fully 

connected layer containing 10 outputs to compute CIFAR-10 class probability 

predictions. 

 

2) Defense Distillation 

Defense distillation uses knowledge distillation principles to improve model resistance 

against adversarial attacks. The training process starts with a baseline model that uses a 

modified softmax function with T=20 as its temperature parameter. The high temperature 

output produces smooth probabilities which extract detailed information about model 

confidence distribution across all classes. Soft labels provide deeper understanding of 

class relationships because they differ from traditional hard labels. The distilled model 

which has an identical architecture to the baseline model receives training through the 

soft labels. The distilled model learns a more general feature space representation through 
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this approach which enhances its resistance to adversarial perturbations [12]. Defense 

distillation implementation steps:  

1. A modified softmax activation function with temperature parameter T=20 should be 

implemented in the baseline ResNet18 model to produce soft labels that benefit the 

distillation process. 

2. Soft labels should be generated from the baseline model outputs for the CIFAR-10 

dataset. 

3. Construct a distilled ResNet18 model identical to the baseline model but trained using 

the generated soft labels. 

 

3) Adversarial Training and Fast Gradient Sign Method (FGSM) 

The study implements adversarial training as a defense mechanism against adversarial 

attacks through the Fast Gradient Sign Method (FGSM) to produce adversarial samples. 

This study chose FGSM because it provides both simplicity and effectiveness which 

makes it a standard method for assessing deep learning model robustness against 

adversarial attacks [3], [6]. The method uses the model's loss function gradient to 

generate tiny perturbations which interfere with classification.  

The FGSM perturbation is defined as follows: 

 

               (   (     )) 

Where: 

 : Original input image 

 : Perturbation scale parameter 

   (     ): Gradient of the loss with respect to input   

 : Model parameter 

 : Original input label 

 

The following steps describe how to produce adversarial samples from each 

minibatch: 

1. Feed forward processing should be performed on the current minibatch. 

2. Calculate the loss from model output and true labels. 

3. Compute the gradient of the loss with respect to the input using backpropagation. 

4. Generate adversarial noise by applying the sign function on gradients scaled by 

epsilon (e.g., 0.1, 0.2). 

5. Add adversarial noise to original inputs to form adversarial samples. 

6. Include adversarial samples in training minibatches. 

 

The following examples from Figure 2 show how FGSM affects CIFAR-10 images at 

different epsilon values. The examples show how small pixel modifications result in 

incorrect classification results. The baseline ResNet18 model misclassifies images after 

FGSM attacks even though the visual changes remain minimal as shown in Figure 2. 

 

 
Figure 2. Examples of CIFAR-10 images before and after FGSM attacks with varying epsilon values. 
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Left: Original image (class: "cat"). 

Middle: Adversarial image with epsilon = 0.1 (predicted as "plane"). 

Right: Adversarial image with epsilon = 0.2 (predicted as "car"). 

 

The model receives training through combined original and adversarial data which 

leads to a major improvement in its resistance against FGSM attacks. 

 

C. Data Collection 

The study uses CIFAR-10 as its dataset because it serves as a standard collection for 

image classification tasks. The CIFAR-10 dataset contains 60,000 color images (32x32 

pixels) which are distributed equally across 10 classes (airplane, car, bird, cat, deer, dog, 

etc.) with 6,000 images in each class [14]. The dataset's small size and balanced class 

distribution facilitate effective processing and analysis. The researchers chose CIFAR-10 

because it serves both image classification research and adversarial defense method 

testing purposes. The dataset serves as a standard tool for testing various methods 

including Example-Based Explanations (EBE) for Deep Neural Networks [15] and 

adversarial attacks such as FGSM and adversarial training [16]. The use of this standard 

dataset enables research reproducibility. 

 

 
Figure 3. Example images for each class in the CIFAR-10 dataset. 

 

1) Dataset Exploration 

The first step of dataset exploration checks data quality through class distribution and 

color intensity analysis. The visual inspection confirms that classes are distributed 

uniformly (Figure 3) which guarantees unbiased class representation. 

 
Figure 4. Class distribution in the CIFAR-10 dataset. 

A color histogram (Figure 4) helps identify potential color biases influencing model 

performance, since certain backgrounds might become dominant visual features rather 

than object shape or pattern. 
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Figure 5. Color distribution histogram for the CIFAR-10 dataset. 

2) Data Preprocessing 

Data preprocessing improvement steps enhance model performance using data 

augmentation and transformations. The preprocessing parameters are detailed in Table 1. 

a) Data Augmentation 

The process of data augmentation creates synthetic variations in training data which 

helps prevent overfitting and enhances both robustness and generalization capabilities. 

The following techniques are used: 

1. Random cropping (32x32 pixels) with padding (4 pixels), using PyTorch's 

transforms.RandomCrop. 

2. Random horizontal flipping (probability 0.5) for varied object orientations, using 

transforms.RandomHorizontalFlip. 

3. Random adjustments of brightness, contrast, and saturation (intensity 0–0.2), utilizing 

transforms.ColorJitter. 

 
Table 1. Data preprocessing parameters. 

Process Parameters Description 

Random Crop Size: 32 

Padding: 4 

Randomly crops a portion of the image, 

adding padding to maintain a 32×32 size. 

Horizontal Flip Probability: 0.5 Horizontally flips the image randomly. 

Color Jitter Brightness: 0.2 

Contrast: 0,.2 

Saturation: 0.2 

Randomly varies the image's brightness, 

contrast, and saturation. 

To Tensor  Converts the image to a tensor with 

values scaled from 0 to 1. 

Normalization Mean: (0.4914, 0.4822, 0.4465) 

Std: (0.2470, 0.2435, 0.2616) 

Normalizes each channel of the image. 

 

b) Data Transformation 

The process of data transformation and normalization transforms images into formats 

that GPUs can process efficiently: 

1. Convert images to tensor format scaled between 0 and 1 using transforms.ToTensor. 

2. Normalize each RGB channel using mean values (0.4914, 0.4822, 0.4465) and 

standard deviations (0.2470, 0.2435, 0.2616), which produces uniform data 

distribution and faster model convergence using transforms.Normalize. 

 

D. Experiments 

The experimental hyperparameters, such as learning rate, optimizer, and number of 

epochs, were standardized across models to minimize external influences. Most 

hyperparameters such as optimizer, learning rate, and batch size were kept consistent 

across models to ensure comparability. Model-specific configurations (e.g., temperature 

or epsilon). To make sure the evaluation was fair, all the models were trained using the 

same hyperparameters.  These include a batch size of 32, learning rate of 0.001, AdamW 



Krishna Aurelio Noviandri et al. / Jurnal Sistem Cerdas (2025) Vol 08-No 02  eISSN : 2622-8254 Page : 169 - 187 
 

©Asosiasi Prakarsa Indonesia Cerdas (APIC) 
175 

 

optimizer, and 50 training epochs. Specific configurations related to each defense strategy 

and detailed configuration is presented in Table 2. 

 
Table 2. Hyperparameter configuration for each model. 

Parameter Baseline Defense Distillation Adversarial Training 

Batch Size 32 32 32 

Learning Rate 0.001 0.001 0.001 

Optimizer AdamW 

Weight decay: 0.01 

Betas: (0.9, 0.999) 

Eps: 1e-8 

AdamW 

Weight decay: 0.01 

Betas: (0.9, 0.999) 

Eps: 1e-8 

 

AdamW 

Weight decay: 0.01 

Betas: (0.9, 0.999) 

Eps: 1e-8 

 

Epoch 30 30 30 

Additional Params - Temperature: 20 Epsilon: 0.1, 0.2 

 

Experiments were conducted locally on the researchers' laptops, with hardware 

specifications outlined in Table 3. 

 
Table 3. Hardware specifications. 

Specification Details 

CPU AMD Ryzen 7 5800 H with Radeon Graphics 

8 Core 

~3.2 Ghz 

RAM 32 GB DDR4 

3200 MHz 

GPU NVIDIA GeForce RTX 3070 Laptop GPU 

8 GB 

Storage 1TB NVME SSD 

Operating System Windows 11 Home 64-bit 

CUDA CUDA V12.5.82 

 

Table 3. lists the hardware specification utilized in the experiment, such as the type of 

GPU, CPU, memory, and software environment. 

 

E. Clustering Analysis 

The evaluation and experimentation phases led to clustering analysis which studied 

the internal representation structure of models after inference. The unsupervised 

clustering method was selected to assess model logit representation quality through 

evaluation methods that extend beyond standard confusion matrix metrics. 

The clustering features consisted of pre-softmax logit outputs which were extracted 

from each test sample. The selection of logit outputs as features occurred because these 

outputs maintain class-specific information before softmax normalization takes effect. 

The methods employed include: 

1. Principal Component Analysis (PCA) was used to reduce the dimensionality of the 

logit outputs, enabling efficient processing and visualization. This method was 

chosen for its effectiveness and common use in exploring internal model 

representations. 

2. K-Means clustering was applied with k=10 clusters, corresponding to the number of 

classes in the CIFAR-10 dataset. This method was selected for its ability to capture 

underlying data distribution patterns that may not be evident in a confusion matrix. 

The combination of PCA with K-Means clustering according to [18] produces three 

robust clusters from high-dimensional data complexity. The study [19] demonstrates that 
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K-Means clustering produces optimal clusters which deliver valuable information for 

stakeholders. 

 

F. Benchmarking 

After clustering analysis, the results were used as the baseline for benchmarking. The 

benchmarking process used cluster-based analysis together with entropy per cluster 

measurements. The calculation of entropy used class label frequency distributions from 

each cluster to determine cluster purity. 

The evaluation of model robustness against adversarial attacks depends heavily on 

benchmarking because it assesses both accurate final outputs and stable internal 

representation (logits) when exposed to adversarial noise. 

Cluster purity evaluation based on entropy was proposed in a study [20], which 

applied Shannon entropy to assess the quality of clusters derived from dimensionality 

reduction and unsupervised learning. 

 

III. RESULT AND DISCUSSION 
A. Implementation Steps 

1) Code Implementation 

The development of the baseline model and adversarial defense mechanisms used 

Python version 3.11 with PyTorch for model development and training and Matplotlib 

(pyplot) for visualization. The additional libraries used were NumPy and tqdm. The 

CIFAR-10 dataset was downloaded directly using built-in PyTorch functions. The 

PyTorch autograd module was used to test the adversarial attacks. The code was 

developed on Google Colab for ease of execution and collaboration.  

2) Testing 

The model performance evaluation was conducted using CIFAR-10’s test set. 

Accuracy metric, calculated overall and per class, was the primary evaluation metric. This 

approach assesses model stability against adversarial attacks, evaluating robustness across 

varying intensities of FGSM-generated adversarial samples (epsilon values: 0.05, 0.1, 

0.15, 0.2, 0.25, and 0.3). 

 

B. Results 

1) Clean Data Evaluation 

Table 4 presents the overall accuracy results for each model when tested on clean data. 

The baseline model together with defense distillation models reached high accuracy 

levels at 85.01% and 81.70% respectively. The adversarial training model delivered poor 

results with an accuracy rate of 57.08%. 

 
Table 4. Overall accuracy on clean data. 

Model Accuracy  

Base Model 85.01%  

Defense Distillation 81.70%  

Adversarial Training 57.08%  

 

The accuracy results for each class appear in Table 5.  
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Table 5. Per-class accuracy on clean data. 

 Accuracy (by class) 

Model plane car bird cat deer dog frog horse ship truck 

Base Model 86.1% 92.5% 77.1% 68.3% 85.2% 87.5% 87.1% 87.8% 87.8% 90.7% 

Defense 

Distillation 

79.5% 91.6% 71.8% 74.0% 84.8% 71.0% 82.0% 83.1% 89.5% 89.7% 

Adversarial 

Training 

64.2% 72.4% 42.9% 39.2% 48.7% 46.4% 62.1% 60.9% 69.0% 65.0% 

 

The baseline model shows consistent performance across all classes but achieves the 

lowest accuracy in the "cat" class. The defense distillation model achieves its lowest 

accuracy in the "dog" class. The defense distillation model demonstrates the highest 

minimum per-class accuracy when compared to other models. 

 

 
Figure 6. ROC curves for baseline, defense distillation, and adversarial training models. 

 

 
Figure 7. Confusion matrices for baseline, defense distillation, and adversarial training models. 

 

The confusion matrices in Figure 7 show that the "cat" and "dog" classes are often 

misclassified. This is consistent with the observed increase in accuracy for the "cat" class 

and decrease for the "dog" class in the defense distillation model compared to other 

classes. 

Figure 6 shows the ROC curves for each model. The baseline model generally 

produces sharper curves toward the left, indicating better performance. In the defense 

distillation model, the ROC curve for the "cat" class is closest to the diagonal, suggesting 

that this class remains challenging to classify accurately, despite its improved accuracy 

compared to the "dog" class. 
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Figure 8. Examples of misclassified cat and dog images. 

 

 
Figure 9. Grad-CAM visualizations showing focused regions in 'cat' and 'dog' classifications, highlighting 

attention shifts under adversarial attacks. 

 

The analysis includes five example pictures of cats and dogs which were incorrectly 

identified in Figure 8. The visual similarity between cat and dog body shapes makes side-

view images of these animals more likely to result in incorrect predictions. The visual 

similarity between body shapes of cats and dogs makes it difficult for the model to 

distinguish between them. The main characteristics that distinguish these animals exist in 

their facial features. The image shown in Figure 9 contains two cats which show either 

only the face or the complete body from a side perspective. Grad-CAM visualizations are 

used to demonstrate its focus on facial features for "cat" classification while focusing on 

body features for "dog" classification as shown in Figure 9. The body features dominate 

most images which causes the model to incorrectly classify them as "dog" because of its 

focus. 

The baseline model delivers the highest performance results according to clean data 

testing. The adversarial training model demonstrates poor accuracy because training with 

adversarial data produces negative effects on clean data performance. The defense 

distillation model demonstrates the most generalization capability by achieving balanced 

performance across all classes especially between the often confused "cat" and "dog" 

classes. The models demonstrate poor ability to distinguish between "cat" and "dog" 

classes especially when images show animals from the side because their faces become 

less visible. The defense distillation model achieves better generalization which leads to 

more balanced performance between difficult-to-distinguish classes. 

 

2) Adversarial Attack Evaluation 

Table 6 shows the accuracy performance of each model when subjected to FGSM 

adversarial attacks at different epsilon values.  
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Table 6. Accuracy under FGSM attack (by epsilon) 

 Accuracy under FGSM attack (by epsilon) 

Model .0 .05 .1 .15  .2 .25 .3 

Base Model 85.01% 43.39% 35.97% 30.31% 25.85% 22.47% 19.23% 

Defense Distillation 81.7% 48.97% 40.54% 34.04% 29.18% 25.99% 23.68% 

Adversarial Training 57.08% 33.43% 48.91% 57.03% 60.27% 60.34% 58.56% 

  

The baseline model along with the distillation model experienced major accuracy 

reductions as epsilon values increased (baseline: from 85.01% to 19.23%; distillation: 

from 81.70% to 23.68%). The adversarial training model started with low clean accuracy 

at 57.08% but showed better resistance to attacks at higher epsilon values until it reached 

60.34% accuracy at epsilon = 0.25 before dropping slightly at epsilon = 0.3. The trends in 

Figure 10 show each model's resistance to adversarial attacks. 

 

 
Figure 10. Accuracy against epsilon values of FGSM attack for each model. 

 

C. Performance Evaluation 

The baseline model maintains high performance on clean data yet its accuracy 

plummets when subjected to adversarial testing. The substantial accuracy decrease proves 

that the model remains highly exposed to adversarial attacks thus requiring extra 

defensive measures. The model encounters difficulties when trying to identify between 

"cat" and "dog" classes that share similar characteristics. 

The defense distillation model maintains equivalent accuracy to the baseline model on 

clean data while showing a minimal decrease in performance. The generalization 

approach implemented by this method maintains clean data performance at its original 

level. The method achieves balanced performance between classes that share similar 

features including "cat" and "dog." The model shows a notable accuracy reduction during 

adversarial testing but to a lesser extent than the baseline model. Defense distillation 

provides restricted protection against FGSM attacks according to Papernot et al. [12] who 

reported that such attacks can be partially effective. 

The adversarial training model shows better resistance to adversarial attacks at 

elevated epsilon levels yet it leads to major accuracy losses on clean data. The adversarial 

testing results at epsilon 0.05 show that adversarial training needs to be trained with 

various attack intensities and hyperparameters. The obtained results match the findings of 

Bai et al. [10] who observed that adversarial training might not perform well against 

unknown attacks. 

Model performance can be further improved. The model can achieve better "cat" 

versus "dog" classification through additional training on misclassified samples or 

implementing weighted loss for the "cat" class. The adversarial training model requires 

additional training with multiple epsilon values to enhance its performance on adversarial 

test data. The investigation should explore two variations of adversarial training which 

involve training the baseline model with adversarial data and applying weighted loss to 

the model. 
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D. Clustering Analysis 

This analysis evaluates patterns of misclassification in models that have been 

equipped with adversarial defense mechanisms. The main aim of this analysis is to see if 

misclassified samples form particular clusters and to find out data characteristics that are 

often misclassified. Index labels are given to 10 classes as shown in Table 7. 

 
Table 7. Index label of class 

Index Label Class 

0 plane 

1 car 

2 bird 

3 cat 

4 deer 

5 dog 

6 frog 

7 horse 

8 ship 

9 truck 

 

Table 7 shows the numbers that stand for each class in the CIFAR-10 dataset. This 

numbering simplifies the mapping between model output and actual class labels during 

clustering analysis. Using these label indices allows for consistent interpretation of 

clustering results across all evaluated models. For example, if a cluster has a majority 

index of 3, then the cluster is dominated by the cat class. This mapping also helps to 

analyze the label distribution per cluster and calculate entropy values in the evaluation 

phase. 

 

1) Baseline Model 

The clustering was based on the predicted output and the class labels of the 10 classes 

in the CIFAR-10 dataset, as shown in Table 7. Ranging from ―plane‖ (0) to ―truck‖ (9). 

The distribution of labels in each cluster as shown in Table 8, indicates that some of the 

clusters are dominated by certain classes. For instance, cluster 2 is mainly comprised of 

―bird‖ samples while cluster 3 is mostly made up of ―car‖ samples. This shows that the 

model groups correctly classified instances into fairly uniform clusters. 

On the other hand, some clusters, such as cluster 6 and cluster 9, have a mixed class 

labels. These clusters most probably represent unclear or confusing feature spaces, where 

the model finds it hard to distinguish between the classes. Such clusters can indicate the 

model’s weak points. 

Entropy values for each cluster as shown in Table 9 were computed to quantify label 

heterogeneity. Clusters with low entropy (e.g., cluster 5 and cluster 7) are composed of a 

single class while those with high entropy (e.g., cluster 6 and cluster 9) are of mixed class 

and possibly have high misclassification rates. These high-entropy clusters should be 

scrutinized. 

Figure 11 supports these observations, showing that although some clusters are well-

separated, others are either overlapping or are dispersed without a clear pattern. This 

supports the idea that some of the subsets of data, likely those with similar visual 

characteristics or insufficient separation are more likely to be misclassified. 
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Table 8. Label distribution per cluster. 

 Cluster 

Cluster 0 1 2 3 4 5 6 7 8 9 

0 59 185 5 18 5 3 6 61 50 340 

1 1 0 8 107 99 351 18 348 1 0 

2 28 0 456 99 198 51 367 7 1 0 

3 37 455 0 0 0 0 0 0 58 178 

4 358 28 60 26 23 3 74 1 297 14 

5 195 72 3 1 0 0 0 0 526 30 

6 281 11 272 173 172 53 277 31 58 14 

7 1 241 0 0 0 0 0 1 2 414 

8 6 0 130 242 277 255 191 49 1 0 

9 34 8 66 334 226 284 67 502 6 10 

 

Table 9. Entropy distribution per cluster. 

 Cluster 

Cluster 0 

0 1.518302417 

1 1.353652573 

2 1.488134761 

3 0.991121852 

4 1.523368841 

5 0.989830003 

6 1.941405446 

7 0.697201731 

8 1.716838678 

9 1.728903448 

 

Based on Table 8 dan Table 9, among the 10 clusters generated by the baseline 

ResNet18 model, three clusters namely cluster 3 (―car‖), cluster 5 (―ship‖), and cluster 7 

(―truck‖) demonstrated strong internal consistency and representative, as indicated by 

their low entropy. These clusters could be used as markers of model strength in 

identifying these particular classes. 

 
Figure 11. Cluster visualization of baseline model 
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Certain clusters have a variety of label distributions, as demonstrated via cluster 

visualization. Some clusters, like "car," "ship," and "truck," are dominated by a single 

label. Additionally, PCA visualization demonstrates that the distribution is not entirely 

class-specific. Certain classes, including dogs, cats, and deer, seem to overlap. This 

indicates that the model finds it difficult to distinguish between the visual characteristics 

of these classes because of their similarity. Although it is not ideal, the baseline model 

(ResNet18) generally has a very acceptable representation. 3 out of 10 clusters are pure, 

while the rest show a mixed class distribution. 

 

2) Defense Distillation 

In the second defense mechanism, Defense Distillation, clustering again produced ten 

primary clusters (referencing Table 4). Label distribution as shown in Table 10. 

 
Table 10. Label distribution per cluster. 

 Cluster 

Cluster 0 1 2 3 4 5 6 7 8 9 

0 26 33 95 245 97 155 377 283 10 62 

1 11 355 0 5 2 0 3 6 23 362 

2 25 0 368 244 289 203 152 112 8 7 

3 8 8 76 204 247 301 198 386 2 3 

4 421 2 51 7 6 5 8 2 325 7 

5 90 83 39 79 26 63 110 79 121 155 

6 13 0 128 132 271 222 69 93 2 1 

7 194 8 3 7 1 0 8 3 456 14 

8 7 510 1 3 2 4 9 12 9 384 

9 205 1 239 74 59 47 66 24 44 5 

Some clusters have a dominant label distribution in one class. Cluster 1 can be seen, 

dominated by label 9 (―truck‖). Cluster 8 (―ship‖) is also filled with labels 1 (―car‖) and 9 

(―truck‖). 

 
Table 11. Entropy distribution per dluster. 

 Cluster 

Cluster 0 

0 1.939873112 

1 0.984924725 

2 1.827700958 

3 1.770892759 

4 1.103135892 

5 2.207028115 

6 1.754010035 

7 0.91674845 

8 0.940658536 

9 1.838219181 

 

Cluster-wise entropy analysis showed variation across clusters (Table 11). Clusters 

such as cluster 1 (―car‖), cluster 7 (―horse‖), and cluster 8 (―ship‖) demonstrated low 

entropy and thus higher classification consistency. In contrast, cluster 5 (―dog‖) showed 

the highest entropy, indicating a greater likelihood of misclassification within that cluster. 
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Figure 12. PCA-based clustering of logits from defense distillation model, illustrating moderate 

separation of classes. 

PCA-based visualization (Figure 12) of these clusters revealed partial separation of 

class representations, with notable overlaps among visually similar classes such as ―cat‖ 

vs. ―dog‖ and ―car‖ vs. ―truck.‖ This underscores the limitations of the model in capturing 

nuanced visual differences even under a defense mechanism. 

 

3) Adversarial Training 

The third defense model, Adversarial Training, also resulted in ten main clusters, as 

aligned with Table 7. Label distribution per cluster shown in Table 12.  

 
Table 12. Label distribution per cluster. 

 Cluster 

Cluster 0 1 2 3 4 5 6 7 8 9 

0 67 133 14 24 7 3 18 15 108 242 

1 3 1 90 127 246 261 242 272 2 1 

2 148 6 327 213 171 148 111 127 62 29 

3 2 353 0 0 2 0 7 2 0 193 

4 411 14 72 31 28 14 15 13 247 18 

5 39 136 44 103 56 51 107 87 39 188 

6 1 333 0 0 0 0 1 0 7 282 

7 288 2 8 1 4 0 2 4 521 18 

8 21 0 314 261 291 297 193 201 7 2 

9 20 22 131 240 195 226 304 279 7 27 

 

The most clusters showed different class labels yet some demonstrated strong 

dominance of one class. Cluster 3 together with cluster 6 contain mostly ―car‖ and 

―truck‖ samples while cluster 7 contains mostly ―plane‖ and ―ship‖ examples. The class 

distributions in clusters 1, 2, 5 and 9 show high diversity since they contain mixed class 

representations. 
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Table 13. Entropy distribution per cluster. 

 Cluster 

Cluster 0 

0 1.710525056 

1 1.757710698 

2 2.06337266 

3 0.772763633 

4 1.497353959 

5 2.160905896 

6 0.765075666 

7 0.878843422 

8 1.849606474 

9 1.941006827 

The label distribution (Table 13) in cluster 5 shows the highest degree of 

heterogeneity among all clusters. The entropy values in clusters 2, 8 and 9 exceed 1.85 

which shows there is a high degree of class overlap. The cluster-wise entropy 

measurements of the Adversarial Training model remain below those of the baseline and 

Defense Distillation models which indicates its output representations maintain better 

stability and structure. 

 
Figure 13. Clustering of adversarial training logits via PCA, showing compact and well-separated class 

representations. 

The class distributions in clusters 5 and 9 (Figure 13) remain mixed but most clusters 

demonstrate growing class concentration especially for labels that attackers frequently 

target including label 0 (―plane‖) and labels 8 (―ship‖) and 9 (―truck‖). The improved 

internal class discrimination of the Adversarial Training model becomes apparent despite 

its reduced accuracy on clean data. 
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E. Benchmarking Clustering  
Table 14. Benchmarking between models. 

Benchmarking Aspect ResNet18 (Baseline) Defense Distillation Adversarial Training 

Number of dominant 

cluster 

3 out of  10  

(cluster 3, 5, 7)  

3 out of 10 

(cluster 1, 7, 8)   

3 out of 10 

(cluster 3, 6, 7)   

Most heterogeneous 

clusters 

Cluster 6, 9 Cluster 5 Cluster 5, 9, 2 

  

Average entropy Medium to high Mixed Tends to be lower 

Visualization High overlap (e.g., 

cat/dog/deer)  

Partial separation, but 

still overlapping 

More focused, with many 

well-separated clusters 

Representation stability Unstable Moderately stable for 

some classes 

Most stable overall 

Strengths Good for initial feature 

representation 

Helps improve cluster 

distribution 

More robust, better at 

isolating adversarial target 

clasees 

Weaknesses Tends to be highly 

heterogeneous 

Significant visual 

overlap remains 

Lower acuracy on clean 

data 

 

The benchmarking evaluation of clustering outputs (Table 14) shows the Adversarial 

Training model produces the most organized and focused structure. The cluster 

distribution reveals both decreased total entropy and an increased number of clusters that 

have only one class label. The baseline ResNet18 model shows an inconsistent structure 

through multiple clusters containing different label distributions and higher entropy 

measurements. The Defense Distillation model reduces label overlaps compared to the 

baseline but its clustering results remain inferior to the Adversarial Training model. 

PCA visualizations confirm these results. The Adversarial Training model produces 

distinct clusters which show strong separation between ―plane,‖ ―truck‖ and ―ship‖ labels 

in adversarial contexts. Although the model performs poorly on uncorrupted inputs it 

shows outstanding resistance when facing adversarial attacks. The primary defense 

strategy should be Adversarial Training since it provides the best protection against 

adversarial attacks among the tested models. 

 

F. Limitation and Future Works 

This study has several limitations. The research experiments were performed 

exclusively on the CIFAR-10 dataset which contains basic low-resolution images. The 

research findings have restricted applicability to real-world scenarios such as in the 

medical field (medical images), satellite imagery for traffic. Because they were developed 

using low-resolution images from a simple data structure. The study only examined 

model robustness through evaluation of the Fast Gradient Sign Method (FGSM) 

adversarial attack. The research results may not apply and cannot be justified in general 

against different types of complex adversarial attacks. 

For further research, the study should investigate additional adversarial attack methods 

including transfer attacks and black-box attacks to achieve better model robustness 

assessment. The evaluation of defense mechanism combinations between defense 

distillation and adversarial training could produce more effective defense mechanisms. 

The research should use larger datasets with diverse content and high-resolution images 

to understand how models resist adversarial attacks in different scenarios. 

 

IV. CONCLUSION 
This study shows that the Fast Gradient Sign Method (FGSM) adversarial attack 

significantly reduces the accuracy of the baseline ResNet18 model, dropping from 

85.01% on clean data to 19.23% at an epsilon of 0.3. This sharp decline highlights the 

high vulnerability of deep learning models to adversarial attacks, emphasizing the need 
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for effective defense mechanisms to ensure reliability in image classification applications. 

Evaluation of the two defense strategies tested, defense distillation and adversarial 

training reveals varied performance. Defense distillation maintains strong accuracy on 

clean data (81.70%) but remains vulnerable to FGSM attacks, with accuracy falling to 

23.68% at epsilon 0.3. In contrast, adversarial training demonstrates robustness at higher 

epsilon values (up to 60.34% at epsilon 0.25) but sacrifices clean data performance, 

achieving only 57.08% accuracy. These findings indicate that defense distillation lacks 

sufficient robustness against attacks, while adversarial training trades off clean data 

accuracy for improved resilience. Beyond evaluating defense mechanisms based on 

accuracy, this study introduces a benchmarking approach using clustering analysis and 

per-cluster entropy to assess the stability of the models’ internal logit representations. The 

results show that adversarial training produces more stable and focused internal 

representations compared to the baseline and defense distillation models, despite its lower 

clean data accuracy. This highlights a trade-off between clean data performance and 

adversarial robustness, underscoring the need for balanced defense strategies. The 

development and evaluation of defense distillation and adversarial training against FGSM 

attacks on the ResNet18 model with the CIFAR-10 dataset, along with the proposed 

clustering and entropy-based benchmarking approach, represent the primary contributions 

of this study. These provide a comprehensive analysis of two widely used defense 

methods in the context of FGSM attacks, supported by detailed experimental 

configurations and evaluation metrics. 

Further refinements are needed to enhance the effectiveness of these defense 

strategies. Future research should explore combining defense distillation and adversarial 

training to achieve a better balance between accuracy and robustness. Additionally, 

developing new defense methods to optimize performance against a broader range of 

adversarial attacks, including transfer and black-box attacks, is recommended. Testing on 

larger, more diverse, and higher-resolution datasets is also advised to gain a more 

comprehensive understanding of model robustness. These efforts aim to contribute to the 

development of deep learning-based image classification systems that are both accurate 

and resilient to adversarial attacks. 
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