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Abstract—Technological advancements have propelled the development of environmentally friendly 

transportation, with autonomous vehicles (AVs) and thermal imaging playing pivotal roles in achieving sustainable 

urban mobility. This study explores the application of the SegNet deep learning architecture for multi-class semantic 

segmentation of thermal images in constrained environments. The methodology encompasses data acquisition using a 

thermal camera in urban settings, annotation of 3,001 thermal images across 10 object classes, and rigorous model 

training with a high-performance system. SegNet demonstrated robust learning capabilities, achieving a training 

accuracy of 96.7% and a final loss of 0.096 after 120 epochs. Testing results revealed strong performance for distinct 

objects like motorcycles (F1 score: 0.63) and poles (F1 score: 0.84), but challenges in segmenting complex patterns 

such as buildings (F1 score: 0.34) and trees (F1 score: 0.42). Visual analysis corroborated these findings, highlighting 

strengths in segmenting well-defined objects while addressing difficulties in handling variability and elongated 

structures. Despite these limitations, the study establishes SegNet's potential for thermal image segmentation in AV 

systems. This research contributes to the advancement of computer vision in autonomous navigation, fostering 

sustainable and green transportation solutions while emphasizing areas for further refinement to enhance performance 

in complex environments. 
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I. INTRODUCTION 
Technological innovations play a critical role in enabling environmentally friendly or 

green transportation, with electric vehicles emerging as a key factor in achieving a green 

economy and sustainable development. Electric vehicles exemplify how technology can 

positively influence both the transportation industry and the natural environment [1]. 

Moreover, the development of electric vehicles can be advanced into autonomous 

vehicles capable of operating independently along predetermined routes and distances 

while prioritizing safety and comfort [2]. 

Autonomous vehicles represent a major innovation in the automotive industry, 

revolutionizing how humans drive. These vehicles can accelerate, navigate, detect their 

surroundings, avoid obstacles, and stop autonomously [3],[4]. Autonomous driving 

systems rely on the Prediction function to recognize and understand their environment, 

and the Perception function to avoid collisions and detect obstacles. These functions are 

supported by sensors such as LiDAR, cameras, radar, and GPS, with cameras playing a 

critical role in providing visual perception [5],[6]. 
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Cameras use light sensors in a matrix format with specific dimensions and 

resolutions (Pixels) to capture images received through the lens. The resulting images 

must adapt to lighting conditions through ISO and brightness adjustments. However, in 

outdoor settings, challenges such as low light, sunlight glare, or fog can affect 

performance [7],[8]. To address these limitations, thermal cameras offer a solution as 

they can detect and measure infrared radiation emitted by objects, making them 

effective in conditions where traditional light sensors fail due to lighting or atmospheric 

challenges [9],[10]. The data captured represent infrared energy detected by thermal 

cameras. For thermal camera detection systems to be implemented in autonomous 

vehicles, reliable image processing and object recognition methods are required, 

particularly in constrained environments. 

This study proposes an object detection system using thermal image-based 

segmentation techniques in constrained environments, employing semantic 

segmentation to deeply distinguish objects within images [11]. The system focuses on 

multi-class segmentation to detect 10 object classes, including road surfaces, skies, 

buildings, trees, and vehicles, leveraging the CNN method for classification and pattern 

recognition [12]. Previous studies, such as [13], utilized the ResNet 34 architecture with 

40,216 thermal frames, while [14] implemented the ResNeXt 50 architecture with 

34,030 thermal frames in the Universitas Nurtanio Bandung environment. This research 

takes a different approach by employing the SegNet architecture and a test dataset of 

3,001 thermal frames in the constrained environment of the BRIN (National Research 

and Innovation Agency) office in Bandung. Based on other references, such as [15], 

which utilized the SegNet model for stereo camera image segmentation of obstacle 

objects with real-time (online) testing, an intriguing study [16] performed Road and 

Object Segmentation for Autonomous Vehicles using an RGB-D-NIR camera with 12 

architectures, including SegNet. The key distinction of this research lies in the use of a 

thermal camera, with object annotation conducted for 10 object classes and 

implemented offline, resulting in a fundamentally different system. 

The authors evaluated the CNN architecture using SegNet [17],[18] which has been 

proven effective for image segmentation, as evidenced by [19] for semantic 

segmentation efficiency, in [20] for high-accuracy railway segmentation, and [21] 

SegNet is effective and accurate in segmenting Fatty Liver Disease from ultrasound 

images, achieving an accuracy of 91%. This demonstrates its potential for multi-class 

segmentation in thermal images. 

The implementation of the SegNet architecture for thermal image segmentation in 

constrained environments offers a novel approach to autonomous navigation. This study 

not only continues the exploration of thermal imaging for object detection, as mentioned 

in [22], but also extends its application to multi-class segmentation for a comprehensive 

understanding of environments. Constrained environments serve as controlled test areas 

to evaluate the effectiveness of thermal segmentation for various object classes, with the 

potential for broader applications in autonomous vehicle systems. 

 

II. METHODOLOGY 
A. Experimental Design 

Figure 1 illustrates a detailed workflow diagram outlining the semantic segmentation 

process utilizing deep learning techniques. The approach encompasses several 

sequential stages, starting with data acquisition and concluding with model evaluation. 
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The first phase emphasizes data collection and preprocessing. Thermal video footage 

is recorded using a thermal camera positioned in a controlled environment at the BRIN 

(The National Research and Innovation Agency) Bandung Office. This setting primarily 

includes roads and the surrounding urban infrastructure. The recorded thermal videos 

are processed by extracting frames, resulting in a sequence of thermal images, each 

maintaining a resolution of 640x512 pixels. 

 

 
Figure 1. The Flow Diagram of The Experimental 

The following annotation phase utilizes the LabelMe software to conduct precise 

object labeling across ten distinct categories: background, sky, building, tree, road, 

pavement, car, motorcycle, pedestrian, and pole. This thorough annotation procedure 

was applied to 3,001 thermal images, generating a comprehensive dataset for semantic 

segmentation tasks. The annotated data, initially stored in JSON format, is subsequently 

converted to PNG format to ensure compatibility with deep learning frameworks. 

During the dataset preparation phase, a strategic split is implemented, with 90% (2,700 

images) allocated for model training and 10% (301 images) set aside for testing. This 

distribution guarantees an adequate amount of data for both model training and 

independent performance evaluation. Figure 2 shows an illustration of the dataset image 

that was used.  

 

   
(a) (b) (c) 

Figure 2. The Image for (a) Thermal Image, (b) Data Annotation, (c) PNG Format 

 

Next, the training process employs the SegNet deep learning architecture. Model 

training is carried out on a high-performance computing system featuring an Nvidia 
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RTX 3060 GPU, running for 120 epochs to ensure adequate model convergence and 

optimal parameter adjustment. The workflow concludes with an extensive evaluation 

phase, where the trained SegNet model is tested using the reserved testing dataset to 

assess its performance in semantic segmentation. This methodical approach enables an 

objective evaluation of the SegNet architecture and confirms its effectiveness in thermal 

image segmentation tasks. 

This methodology guarantees reproducibility while upholding scientific rigor 

throughout the experimental procedure, from data acquisition to model evaluation. The 

structured approach supports a detailed analysis of SegNet's capabilities in processing 

thermal imagery for autonomous navigation applications. 

 

B. Parameters Output Models 

The parameter output tables reveal distinctive architectural characteristics of SegNet 

(Table 1), showcasing its unique approach to semantic segmentation. The following 

examines the key features and architectural philosophy of SegNet in detail. 
     Table 1.The Parameter Output of The Architecture of SegNet 

Layer Layer (type) Output Shap Param 

Input Stage input_1 (InputLayer) [(None, 416, 608, 3)] 0 

zero_padding2d (ZeroPadding 2D) (None, 418, 610, 3) 0 

First Layer conv2d (Conv2D (None, 416, 608, 64) 1792 

batch_normalization (BatchNormalization) (None, 416, 608, 64) 256 

activation (Activation) (None, 416, 608, 64) 0 

max_pooling2d (MaxPooling2D) (None, 208, 304, 64) 0 

zero_padding2d_1 (ZeroPadding2D) (None, 210, 306, 64 0 

Second Layer  conv2d_1 (Conv2D) (None, 208, 304, 128 73856 

batch_normalization_1 (Batc hNormalization) (None, 208, 304, 128) 512 

activation_1 (Activation) (None, 208, 304, 128) 0 

max_pooling2d_1 (MaxPooling 2D) (None, 104, 152, 128) 0 

zero_padding2d_2 (ZeroPaddi ng2D) (None, 106, 154, 128) 0 

Third Layer conv2d_2 (Conv2D) (None, 104, 152, 256) 295168 

batch_normalization_2 (BatchNormalization) (None, 104, 152, 256) 1024 

activation_2 (Activation) (None, 104, 152, 256) 0 

max_pooling2d_2 (MaxPooling2D) (None, 52, 76, 256) 0 

zero_padding2d_3 (ZeroPaddi ng2D) (None, 54, 78, 256) 0 

Fourth Layer conv2d_3 (Conv2D) (None, 52, 76, 256) 590080 

batch_normalization_3 (BatchNormalization) (None, 52, 76, 256) 1024 

activation_3 (Activation) (None, 52, 76, 256 0 

max_pooling2d_3 (MaxPooling2D) (None, 26, 38, 256) 0 

zero_padding2d_4 (ZeroPadding2D) (None, 28, 40, 256 0 

Fifth Layer conv2d_4 (Conv2D) (None, 26, 38, 512) 1180160 

batch_normalization_4 (BatchNormalization) (None, 26, 38, 512) 2048 

up_sampling2d (UpSampling2D) (None, 52, 76, 512) 0 

zero_padding2d_5 (ZeroPadding2D) (None, 54, 78, 512) 0 

Sixth Layer conv2d_5 (Conv2D (None, 52, 76, 256) 1179904 

batch_normalization_5 (BatchNormalization) (None, 52, 76, 256) 1024 

up_sampling2d_1 (UpSampling2D) (None, 104, 152, 256) 0 

zero_padding2d_6 (ZeroPadding2D) (None, 106, 154, 256) 0 

Seventh Layer conv2d_6 (Conv2D) (None, 104, 152, 128 295040 

batch_normalization_6 (BatchNormalization) (None, 104, 152, 128) 512 

up_sampling2d_2 (UpSampling2D) (None, 208, 304, 128) 0 

zero_padding2d_7 (ZeroPadding2D) (None, 210, 306, 128) 0 

Eighth Layer conv2d_7 (Conv2D) (None, 208, 304, 64) 73792 

batch_normalization_7 (BatchNormalization) (None, 208, 304, 64) 256 

Ninth Layer conv2d_8 (Conv2D) (None, 208, 304, 10 5770 

reshape (Reshape) (None, 63232, 10) 0 

activation_8 (Activation) (None, 63232, 10 0 
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The SegNet architecture is an efficient encoder-decoder model designed for semantic 

segmentation tasks, offering a structured framework to process high-dimensional input 

tensors into pixel-wise class predictions. The network begins with an input tensor of 

size [416, 608,3], representing the height, width, and channels of the image. The first 

stage involves zero-padding, preserving the spatial dimensions while introducing no 

additional parameters. This step ensures consistent dimensions across subsequent layers. 

In the encoder, each layer consists of convolutional operations, batch normalization, 

and max-pooling. The convolutional layers are characterized by kernels of size      
with the number of parameters computed using the formula: 

 

             (           )                                           (1) 

  

Where           are the kernel dimensions,     is the number of input channels, and 

     is the number of output channels. Following each convolution, batch normalization 

is applied, introducing 2 .      additional parameters to stabilize training. 

Dimensionality reduction is achieved via max-pooling, where spatial dimensions are 

halved according to the formula: 

     
   

  
,         

   

  
,                      (2) 

 

With      for a typical pooling size of    . This step reduces the computational 

cost while preserving the most salient features of the input. The decoder mirrors the 

encoder in structure but substitutes max-pooling with upsampling layers to restore 

spatial resolution. Upsampling increases dimensions by a factor of two, governed by the 

formula: 

 

           ,                    (3) 

 

Where    is the upsampling factor, typically set to 2. The decoder's convolutional 

layers apply the same parameterization formula as the encoder, ensuring a symmetrical 

design. 

In the final stage, the network reshapes the output tensor into a 2D matrix of size 

(   ), where       is the number of pixels in the image and K is the number of 

segmentation classes. This is followed by a softmax activation function, which assigns a 

probability distribution across all classes for each pixel: 

       (  )  
   

∑  
   

   

      (4) 

 

Where    is the logit for class  . This formulation allows the model to predict pixel-

wise class probabilities for semantic segmentation tasks. The total number of 

parameters in the network is the summation of all parameters across convolutional and 

batch normalization layers: 

 

                 ∑                             
 
      (5) 

 

where   is the total number of convolutional layers. 
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III. RESULT AND DISCUSSION 
The analysis of the training accuracy and loss graph (Figure 3) from the SegNet 

architecture provides detailed insights into its learning process during the training phase 

using a dataset of 2,700 images covering 10 object classes. 

The analysis of the training accuracy and loss graph from the SegNet architecture 

provides detailed insights into its learning process during the training phase, utilizing a 

dataset of thermal images for segmentation tasks across multiple object classes. 

The training accuracy graph demonstrates a clear upward trend as the epochs 

progress. SegNet begins the training process with an initial accuracy of approximately 

0.69 and shows steady improvement over the course of the training. The model achieves 

significant accuracy gains within the first 20 epochs, surpassing 90% by epoch 20 and 

continuing to improve gradually. By the end of training at epoch 120, the model reaches 

a final accuracy of approximately 0.967, indicating a high level of performance. The 

stabilization of the accuracy curve in later epochs suggests that SegNet successfully 

converges and achieves optimal learning without significant variability. 

The training loss graph provides additional insight into SegNet’s optimization 

process. Starting with an initial loss of about 0.927, the loss decreases sharply during 

the early epochs, reflecting rapid parameter adjustments and effective error 

minimization. By epoch 50, the loss drops below 0.2, and it continues to decline 

gradually, stabilizing at approximately 0.096 by epoch 120. This consistent reduction in 

loss demonstrates the model's ability to effectively optimize for the given segmentation 

task.  

The combined analysis of the accuracy and loss trends underscores SegNet’s reliable 

and stable learning characteristics. The simultaneous stabilization of accuracy and loss 

during the later epochs highlights proper convergence and indicates the absence of 

overfitting. The chosen training duration of 120 epochs proves to be sufficient for 

achieving robust results, enabling SegNet to handle the demands of thermal image 

segmentation with high precision and reliability. 

The training results highlight SegNet’s strong learning capabilities and consistent 

optimization process. The architecture demonstrates its suitability for thermal image 

segmentation tasks, handling the challenges effectively and producing accurate, stable, 

and convergent learning patterns throughout the training phase. 

 

 
Figure 3. Training accuracy and loss given by SegNet after training process 
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The performance analysis of the SegNet model was conducted through testing on 

301 thermal images containing 10 distinct object classes, following a training phase that 

utilized 2,700 thermal images. The evaluation metrics provided in Table 2 reveal the 

model’s performance across multiple dimensions of assessment. 
 

 Tabel 2. Performance metrics given by SegNet 

Class SegNet 

Accuracy Precision Recall F1 Score AP 

Background 0.82 0.21 0.58 0.31 0.5 

Sky 0.92 0.74 0.66 0.69 0.3 

Building 0.69 0.37 0.32 0.34 0.35 

Pole 0.95 0.77 0.93 0.84 0.18 

Road 0.83 0.34 0.57 0.42 0.44 

Pavement 0.76 0.53 0.58 0.55 0.79 

Tree 0.75 0.69 0.28 0.4 0.89 

Car 0.88 0.43 0.55 0.48 0.36 

Pedestrian 0.93 0.72 0.72 0.72 0.37 

Motorcycle 0.95 0.88 0.49 0.63 0.37 

Average 0.85 0.57 0.57 0.54 0.46 

 

SegNet demonstrates a varied performance across primary metrics in semantic 

segmentation tasks, as reflected in the provided evaluation results. On average, the 

model achieves 0.85 accuracy, 0.57 precision, 0.57 recall, 0.54 F1 score, and 0.46 

average precision (AP). These metrics highlight SegNet's capability to handle 

segmentation tasks while also revealing limitations in specific areas. 

A detailed analysis of class-specific performance shows that SegNet excels in 

detecting poles, pedestrians, and motorcycles, achieving accuracies of 0.95, 0.93, and 

0.95, respectively. These results suggest that the model is effective in handling distinct 

and well-defined objects. However, the model faces challenges with classes such as 

buildings and trees, which record lower accuracies of 0.69 and 0.75, respectively. These 

difficulties are further reflected in low recall values for trees (0.28) and buildings (0.32), 

indicating the model’s struggle to identify all relevant instances of these classes. 

Precision scores point to significant challenges with false positives, particularly for 

the background (0.21) and building (0.37) classes, which indicate frequent 

misclassifications. Conversely, the model demonstrates stronger precision in detecting 

motorcycles (0.88) and poles (0.77), showing its robustness in these categories. The F1 

score, which balances precision and recall, further illustrates these trends, with the pole 

class achieving the highest score (0.84) and the building class lagging behind (0.34). 

The model's performance in the background class, with a low precision of 0.21 and 

an F1 score of 0.31, suggests difficulties in handling the variability of background 

patterns, likely caused by diverse environmental factors. Similarly, the relatively low F1 

scores for roads (0.42) and cars (0.48) highlight limitations in detecting safety-critical 

classes, which could impact the model’s applicability in domains like autonomous 

driving or urban surveillance. 

In contrast, SegNet shows strong potential in pedestrian detection (F1 score of 0.72) 

and motorcycle detection (F1 score of 0.63), making it particularly valuable for 
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applications requiring accurate identification of dynamic objects. However, the low 

average precision (AP) scores for certain classes, such as poles (0.18) and background 

(0.50), indicate challenges in maintaining consistent detection performance across 

diverse scenarios. 

SegNet demonstrates robust performance for specific object classes but faces notable 

challenges with false positives, low recall, and certain variable patterns. These results 

suggest the need for targeted architectural refinements and training strategies to improve 

the model's reliability and effectiveness in complex segmentation tasks. 

 
Tabel 3. Visual outputs given by SegNet 

SegNet 

AP Maximum: 0.89 Minimum: 0.18 

Class Tree Pole 

 

 

Segmented 

Image 

Prediction 

  
 

The visual outputs from SegNet (Table 3) provide key insights into its segmentation 

performance when combined with its quantitative metrics. A detailed review highlights 

how SegNet handles different object classes and boundary conditions. 

For the "Tree" class, which achieves the highest AP score of 0.89, the visual outputs 

display well-defined boundaries and consistent region segmentation. These results align 

with the model’s training metrics, particularly its high precision (0.69) for trees, 

indicating that SegNet effectively identifies and separates tree regions from the 

surrounding background. 

In contrast, the "Pole" class, with the lowest AP score of 0.18, demonstrates 

significant challenges. The visual predictions show fragmented and incomplete pole 

structures, reflecting difficulties in detecting thin and elongated objects. This is 

consistent with the quantitative metrics, where poles exhibit high recall (0.93) but low 

precision, suggesting the model over-identifies similar structures in the background, 

leading to false positives. 

The visual outputs highlight SegNet's strengths in segmenting clear and well-defined 

objects, like trees, but also its limitations with complex or narrow structures, like poles. 

These challenges emphasize the need for improved feature extraction and post-

processing techniques to enhance segmentation accuracy across diverse object classes. 

 

IV. CONCLUSION 
This study demonstrates the potential of the SegNet architecture for multi-class 

semantic segmentation of thermal images in constrained environments, achieving a 

training accuracy of 96.7% and a stabilized loss of 0.096. While SegNet excels in 

segmenting well-defined objects such as poles, motorcycles, and pedestrians, challenges 

persist with complex patterns like buildings and trees. These findings highlight the need 

for enhanced feature extraction techniques and architectural improvements to address 
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class-specific variability. By advancing the application of thermal imaging in 

autonomous navigation, this research provides a strong foundation for future 

developments in sustainable urban mobility and green technology. 
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